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New structural studies of RNA polymerase II (Pol II) complexes

mark the beginning of a detailed mechanistic analysis of the

eukaryotic mRNA transcription cycle. Crystallographic models of

the complete Pol II, together with new biochemical and

electron microscopic data, give insights into transcription

initiation. The first X-ray analysis of a Pol II complex with a

transcription factor, the elongation factor TFIIS, supports the

idea that the polymerase has a ‘tunable’ active site that switches

between mRNA synthesis and cleavage. The new studies

also show that domains of transcription factors can enter

polymerase openings, to modulate function during transcription.
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Abbreviations
CTD carboxy-terminal repeat domain

NMR nuclear magnetic resonance

NTP nucleoside triphosphate

Pol II RNA polymerase II

RNP ribonucleoprotein

Rpb4/7 Rpb4–Rpb7 heterodimer

TBP TATA-box-binding protein

TF transcription factor

Introduction
The synthesis of eukaryotic mRNA is carried out by RNA

polymerase II (Pol II). During the mRNA transcription

cycle, Pol II associates transiently with many different

factors, including the general transcription factors TFIIB,

-D, -E, -F, and -H, which mediate promoter recognition

and opening during initiation, coactivators, which trans-

mit regulatory signals to Pol II, elongation factors, which

enable efficient production of long RNAs, and multi-

protein factors for RNA 30-processing and transcription

termination [1–3]. The elaborate regulation of the Pol II

transcription cycle may, to a large extent, underlie orga-

nismal complexity and animal diversity [4].

Three years ago, three-dimensional structures of the 10-

subunit core of budding yeast Pol II were reported [5–7],

which gave insight into the basic aspects of transcription

[8,9]. A mechanistic understanding of the transcription

cycle, however, requires structural information on Pol II

in complex with associated factors. The large size and

transient nature of such complexes makes their prepara-

tion and analysis very difficult; but over the past year,

crystallographic models could be obtained of the com-

plete Pol II — a complex of the polymerase core with two

additional subunits — and of a first Pol II complex with a

transcription factor. Following a summary of previous

structural studies of the Pol II core, I review here the

new structures and recent biochemical and electron

microscopic data on Pol II complexes.

Pol II core enzyme
Pol II from the yeast Saccharomyces cerevisiae has a mole-

cular weight of 0.5 MDa and comprises 12 subunits that

are highly conserved among eukaryotes. Yeast Pol II can

dissociate in a 10-subunit catalytic core and a heterodimer

of subunits Rpb4 and Rpb7 (Rpb4/7 complex) [10].

Structures of the Pol II core were determined in two

forms and showed that the two large subunits, Rpb1 and

Rpb2, form the central mass of the enzyme and a posi-

tively charged ‘cleft’ [5,6] (Table 1). One side of the cleft

is formed by a mobile ‘clamp’ that adopts open states in

both structures. The active center is formed between the

clamp, a ‘bridge helix’ that spans the cleft, and a ‘wall’

that blocks the end of the cleft. A ‘pore’ beneath the

active center widens towards the outside, creating an

inverted ‘funnel’. The rim of the pore includes a loop

of Rpb1 that binds a Mg2þ ion (‘metal A’) with three

aspartate residues. A second metal ion, ‘metal B’, can bind

weakly further in the pore. In a structure of a minimal Pol

II core elongation complex, DNA and RNA form a nine

base pair hybrid duplex above metal A and the pore, and

the clamp adopts a closed state [7]. From the outer side of

the clamp base protrudes the beginning of a 100-residue

‘linker’ that connects to the C-terminal repeat domain

(CTD) of Rpb1, which is disordered in all structures.

Complete Pol II
The Pol II core enzyme is catalytically active but requires

the Rpb4/7 complex and the general transcription factors

for initiation from promoter DNA [10]. The structure of

an isolated archaeal Rpb4/7 counterpart revealed that

the Rpb4 homolog binds between two Rpb7 domains,

an N-terminal ribonucleoprotein (RNP)-like domain, and

a C-terminal oligosaccharide-binding fold [11]. Cryo-

electron microscopy of the 12-subunit yeast Pol II

revealed that Rpb4/7 is located on the core surface below

the closed clamp [12�]. This location coincided with that

of the Rpb4/7 counterpart in Pol I, also revealed by

electron microscopy [13�].

Current Opinion in Genetics & Development 2004, 14:218–226 www.sciencedirect.com



Crystallographic backbone models of the complete Pol II,

including the Rpb4/7 complex, were now derived inde-

pendently by two groups [14��,15��] (Figure 1). Crystal-

lographic studies of the complete Pol II had previously

been hampered by substoichiometric amounts of Rpb4/7.

To overcome this obstacle, one group reconstituted the

complete Pol II from endogenous yeast core and recom-

binant Rpb4/7 [14��], whereas the other purified the

complete Pol II from a yeast strain carrying a tag on

Rpb4 [15��]. The resulting crystal forms and backbone

models are essentially identical. The models confirm that

Rpb4/7 protrudes from the polymerase surface near the

base of the clamp, and that the clamp is in a closed state,

resembling that in the elongation complex [7]. Rpb4/7

binds to the Pol II core with the N-terminal domain of

Rpb7, termed the ‘tip’. Most of the Rpb4/7 surface is

exposed and accessible for interactions with proteins or

nucleic acids, and a potential nucleic-acid-binding surface

on Rpb7 [11,16] faces the presumed RNA exit site. The

Rpb4/7 complex can apparently recruit factors to exiting

RNA or to the CTD. For example, the RNA-binding

factor Nrd1 and the CTD phosphatase Fcp1 interact

directly with the Rpb4/7 complex [17,18].

Initiation: pieces of a puzzle
In the complete Pol II models, the clamp is in a closed

position and its movement is severely restricted by the

Rpb4/7 complex that forms a wedge below the clamp.

This suggests that the clamp is closed during initiation

and that the promoter duplex is initially bound outside

the cleft. After DNA melting, the template single strand

could slip inside the cleft, and would bind in the active

center to initiate RNA synthesis. Wide opening of the

clamp for passage of a DNA duplex [6] would require

dissociation of Rpb4/7, and now appears unlikely. In

addition to the complete Pol II, initiation requires TFIIB,

-D, -E, -F, and -H. The additional factor TFIIA can

contribute stabilizing interactions [19], as observed in

refined structures of two TFIIA–TBP–DNA complexes

[20]. The TFIID subunit TATA-box-binding protein

(TBP) and the C-terminal domain of TFIIB assemble

around the TATA box, a frequent promoter element

located 25–30 base pairs upstream of the transcription

start site. The TFIIB N-terminal zinc-ribbon domain

binds Pol II and is essential for its recruitment [21–23],

but also has post-recruitment functions.

Table 1

X-ray crystallographic studies of RNA polymerase II.

Structure Resolution [Å] PDB code References

Pol II corea form 1 3.1 1i3q [5,6]
Pol II corea form 2 2.8 1i50 [6]

Pol II corea-DNA/RNA 3.3 1i6h [7]

Pol II corea-a-amanitin 2.8 1k83 [66�]

Pol II 4.2 1nt9 [14��]

Pol II 4.1 1nik [15��]

Pol II-TFIIS 3.8 1pqv [44��]

aPol II core lacks the Rpb4/7 complex.

Figure 1
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With the use of photocrosslinking, radical probing, and

mutational analysis, Hahn and coworkers showed that the

TFIIB zinc ribbon binds to the Pol II ‘dock’ domain [24�],
suggested previously to bind initiation factors [6]

(Figure 2). The zinc ribbon is not in close contact with

promoter DNA [24�], arguing for DNA loading above the

cleft. After DNA melting, however, TFIIB seems to

contact both DNA strands within the transcription bub-

ble, as suggested by protein–DNA crosslinking studies of

a related archaeal polymerase complex [25�]. Crystallo-

graphy confirms that the zinc ribbon binds the dock

domain and further shows that a protrusion from TFIIB

reaches into the hybrid-binding site (D Bushnell, R

Kornberg, personal communication). The zinc ribbon

could thus stabilize an early transcribing complex until

a complete nine-base pair DNA–RNA hybrid is formed.

Indeed, TFIIB stabilizes a polymerase complex compris-

ing a short RNA pentamer (D Bushnell, R Kornberg,

personal communication). Exiting RNA beyond the

hybrid could release TFIIB and facilitate promoter clear-

ance because the TFIIB-binding site overlaps the pro-

posed RNA exit site [24�]. Resembling the TFIIB

protrusion, the bacterial transcription initiation factor s
penetrates the polymerase hybrid binding site with its

region 3.2 [26��,27��], suggesting that parts of s and

TFIIB perform analogous functions.

TBP and a TFIIB homologue suffice for promoter load-

ing onto archaeal polymerase. Promoter loading onto Pol

II additionally requires TFIIF [28,29], which forms a

tight complex with Pol II. A recent electron microscopic

study of a Pol II–TFIIF complex showed that the second

largest TFIIF subunit extends above and along the Pol II

cleft, resembling the interaction of its sequence homol-

ogue s with bacterial polymerase [30��]. Parts of TFIIF

attributed to the largest subunit bind to the Rpb4/7

complex [30��]. The counterpart of the Rpb4/7 complex

in Pol I also interacts with an initiation factor [31,32], and

in Pol III, the Rpb4 homolog binds the TFIIB-related

factor Brf [33], which in turn binds TBP with its C-

terminal region [34�]. Thus Rpb4/7 and its counterparts

bridge between the core polymerases and initiation fac-

tors, and should contribute to promoter specificity.

A comparison of the Pol II complexes with the structure

of bacterial RNA polymerase bound to s and promoter

DNA [35��] suggests a general topological similarity of

promoter loading onto Pol II and onto the bacterial

polymerase. Parts of TFIIF and TFIIB bind to polymer-

ase in regions that are also bound by the s factor and

apparently fulfil analogous functions. TBP, TFIIB, and

parts of TFIIF apparently assemble at the Pol II

‘upstream face’, where promoter DNA is located in the

bacterial complex. Some regulatory mechanisms may also

be similar in Pol II and the bacterial polymerase. Electron

microscopy shows that the coactivator complex Mediator

binds near the Rpb3–Rpb11 subunit heterodimer of Pol

II, and a corresponding surface on bacterial polymerase is

important for transcription regulation [36�].

Following assembly of the Pol II–TFIIF–TFIIB–TBP–

DNA complex, promoter DNA is melted with the help of

TFIIE and TFIIH. The underlying mechanisms are

poorly understood but may involve large structural

changes, given that the single-subunit T7 RNA polymer-

ase undergoes dramatic refolding during the transition

from initiation to elongation [37��]. A recent structural

study showed that the conserved and functionally essen-

tial N-terminal region of the large TFIIE subunit forms

an unusual winged helix-turn-helix (winged helix)

domain with distinct protein interaction surfaces that

could recruit TFIIE to the polymerase complex [38�].
Although the winged helix fold is often found in DNA-

binding proteins, this domain shows an atypical DNA-

binding face and lacks DNA-binding activity [38�].
Another winged helix domain in the small TFIIE sub-

unit, however, binds DNA [39]. TFIIF contains two

Figure 2
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winged helix domains: one that binds DNA [40], and

one that binds the helical C terminus of the phosphatase

Fcp1 [41�,42�].

Pol II–TFIIS complex and mRNA cleavage
During mRNA elongation, Pol II can encounter DNA

sequences that cause reverse movement of the enzyme.

Such ‘backtracking’ apparently involves extrusion of the

RNA 30-end into the pore, and can lead to transcriptional

arrest (Figure 3a). Escape from arrest requires cleavage of

the extruded RNA with the help of the elongation factor

TFIIS (or SII), the first Pol II transcription factor that was

isolated. TFIIS strongly enhances a weak intrinsic nucle-

ase activity of Pol II [43]. TFIIS consists of an N-terminal

domain I, which is weakly conserved and not required for

activity, a central domain II, and a C-terminal domain III.

Domain II and the linker between domains II and III are

required for Pol II binding. Domain III is a zinc ribbon

domain essential for RNA cleavage.

Recently a backbone model for the Pol II–TFIIS com-

plex was obtained from X-ray analysis of a Pol II crystal

soaked with a recombinant TFIIS variant lacking domain

I [44��] (Figure 3b). Assembly of this 13-polypeptide

complex was possible within the crystals because large

solvent channels leave the TFIIS-binding site accessible,

and because the crystal packing accommodates TFIIS-

induced structural changes. In the structure, TFIIS

extends from the outermost jaws to the internal active

site. TFIIS binds with domain II to one of the jaws,

extends into the funnel, and inserts domain III into the

pore, to reach the polymerase active site from below. The

pore is wide enough to accommodate both TFIIS domain

III and extruded RNA during rescue of arrested com-

plexes. It is currently unclear whether TFIIS is only

recruited to arrested complexes and, if so, what the trigger

for such recruitment would be.

From TFIIS domain III protrudes a b-hairpin that com-

plements the Pol II active site with two invariant and

functionally essential acidic residues. This complemen-

tation supports the idea that Pol II contains a single active

site for both RNA polymerization and cleavage [44��,45–

47]. A model of a Pol II–TFIIS–DNA–RNA complex

shows that the TFIIS hairpin approaches the RNA back-

bone near metal A, and that it could bind a metal ion B

adjacently [44��]. During hydrolytic RNA cleavage, metal

B could activate a water molecule for an SN2-type nucleo-

philic attack of a phosphorous atom, in-line with the

scissile RNA phosphodiester bond [44��], analogous to

Figure 3
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DNA cleavage by the Klenow DNA polymerase exonu-

clease domain [48,49]. Although this mechanism remains

speculative, it is consistent with the requirement for

divalent metal ions [50,51], and with evidence for a

nucleophilic water molecule [50]. Indeed, biochemical

analysis of the exonuclease activity of bacterial RNA

polymerase led to the same proposal for the cleavage

mechanism [52�].

Other nuclear RNA polymerases apparently use the same

mechanism. RNA cleavage by Pol III requires its C11

subunit, which comprises a TFIIS-like zinc ribbon with

two acidic residues that are essential for yeast viability

[53]. The archaeal transcript cleavage factor TFS is a C11

homologue [54]. Several lines of evidence suggested that

the bacterial transcript cleavage factors GreA and GreB

also function essentially like TFIIS despite differences in

structure [55–57]. This idea is strongly supported by an

electron microscopic reconstruction of a bacterial poly-

merase–GreB complex [58��] (Figure 4). GreB binds with

its coiled-coil protrusion in the secondary channel of the

polymerase, which corresponds to the Pol II pore, and

approaches the active site with two acidic residues that

are critical for function [58��]. These findings demon-

strate the conserved strategies employed for RNA clea-

vage stimulation by the structurally unrelated bacterial

and eukaryotic transcript cleavage factors.

Tunable active site and proofreading
Biochemical and structural work led to the appealing

model of a unified two-metal-ion mechanism for both

RNA polymerization and cleavage at a single tunable

active site in all nuclear RNA polymerases [44��,52�,58��].
In this model, RNA polymerization and cleavage both

require metal A, but differential coordination of a metal B

switches Pol II activity from polymerization to cleavage

(Figure 5). For RNA polymerization, metal B would bind

the phosphates of the substrate NTP. For stimulated

RNA cleavage, the TFIIS acidic hairpin would position

metal B and a nucleophilic water molecule. For cleavage

in the absence of TFIIS, metal B could be bound by an

additional unpaired nucleotide located in the pore [52�].
It is important to remember that the suggested mechan-

isms await verification by additional studies such as high-

resolution structures.

The tunable polymerase active site could allow for effi-

cient mRNA proofreading because RNA cleavage creates

a new RNA 30-end at metal A, from which polymerization

can continue. Two types of proofreading reactions may

occur, removal of a misincorporated nucleotide directly

after its addition, or cleavage of a dinucleotide after

misincorporation and backtracking by one nucleotide.

There seems to be a substantial difference in proofread-

ing strategies by DNA and RNA polymerases. In the

Klenow DNA polymerase, the growing DNA shuttles

between widely separated active sites for DNA synthesis

and cleavage [59]. In Pol II, however, the growing RNA

remains at a single active site that switches between RNA

synthesis and cleavage.

Conformational regulation
Comparison of the available Pol II structures begins to

unravel the manifold conformational regulation of the

Figure 4
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enzyme. The core Pol II structures showed three differ-

ent states of the mobile clamp, with the closed state

adopted by the elongating enzyme. The complete Pol

II model also showed a closed clamp, restricted by the

wedge-like Rpb4/7 complex. Thus the clamp adopts

several conformational states, which are influenced by

crystal packing in case of the free Pol II core structures. In

the Pol II core elongation complex, the clamp is, however,

not involved in crystal contacts and its closed state may

thus be a consequence of binding the DNA–RNA hybrid.

By contrast, packing interactions remain essentially unal-

tered when TFIIS is soaked into preformed Pol II crys-

tals, and observed conformational changes in the Pol II–

TFIIS complex may thus be attributed to TFIIS binding.

TFIIS induces structural changes in the active center,

which may reposition nucleic acid substrates, and triggers

a movement of about one-third of the polymerase mass.

Several biochemical studies suggested different func-

tional states of the polymerase with distinct conforma-

tions [60,61], but it is unclear how these are related to the

crystallographically defined Pol II conformations.

Comparison of the TFIIS structure in its Pol II-bound

state with the NMR structure of free TFIIS in solution

[62–64] shows that the factor undergoes a dramatic fold-

ing transition upon polymerase binding (Figure 3c). In

the free TFIIS fragment, 25% of the residues are dis-

ordered, but nearly all residues adopt a defined structure

upon interaction with the Pol II target surface. Three

short helices are added to domain II, the interdomain

linker forms a helix, and the intrinsically flexible acidic

hairpin becomes fixed in the context of Pol II. It can be

expected that other modular and flexible transcription

factors, including TFIIB, -E, and -F, also undergo struc-

tural transitions and induced folding upon their assembly

within Pol II complexes.

Conclusions
Recent structural studies of Pol II complexes mark the

beginning of a detailed structure–function analysis of the

transcription cycle. The crystallographic Pol II structure

was extended from the 10-subunit core to the complete

12-subunit enzyme. A first complex of Pol II with a

transcription factor, TFIIS, was also resolved by X-ray

analysis. These structural data and recent biochemical

and electron-microscopic data on Pol II–TFIIB and Pol

II–TFIIF complexes explain functions of Pol II-binding

factors during initiation and mRNA cleavage. Small pro-

tein domains, such as zinc ribbon domains (TFIIS,

TFIIB) and winged helix domains (TFIIE, TFIIF),

and presumably flexible regions linking such domains,

can apparently enter the enzyme’s openings and mod-

ulate function by influencing polymerase–nucleic acid

interactions. In the future, additional Pol II complex

structures will continue to provide unexpected insights

into transcription and to explain transcription factor func-

tion. Structural work will be complemented with a more

and more elaborate biochemical and genetic dissection of

the mechanisms underlying eukaryotic mRNA synthesis

and its regulation.

Update
Shortly before this paper went to press, two biochemical

studies appeared that provide support for the discussed

general mode of action of transcription cleavage factors,

and for a single tunable active site in RNA polymerases.

One study [67] mapped the interaction interface of the

bacterial transcript cleavage factor GreB with bacterial

RNA polymerase and identified the two functionally

essential acidic residues. The other study [68] used

RNA–protein crosslinking, site-directed mutagenesis

and biochemical assays to also show that the Gre factor

functions by donating catalytic residues to the bacterial

RNA polymerase active center, and possibly by coordi-

nating a second metal ion. Both studies result in a model

for the bacterial RNA polymerase–Gre complex similar to

Figure 5
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the one described in [58��] and are in agreement with the

structural study of the corresponding Pol II–TFIIS com-

plex and the conclusions drawn from it [44��].
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