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■ Abstract The past decade has seen an explosive increase in information about
regulation of eukaryotic gene transcription, especially for protein-coding genes. The
most striking advances in our knowledge of transcriptional regulation involve the chro-
matin template, the large complexes recruited by transcriptional activators that regulate
chromatin structure and the transcription apparatus, the holoenzyme forms of RNA
polymerase II involved in initiation and elongation, and the mechanisms that link
mRNA processing with its synthesis. We describe here the major advances in these
areas, with particular emphasis on the modular complexes associated with RNA poly-
merase II that are targeted by activators and other regulators of mRNA biosynthesis.
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INTRODUCTION

The purification of the nuclear RNA polymerases in the 1960s provided the foun-
dation for efforts to understand the regulation of eukaryotic gene expression. Three
distinct DNA-dependent nuclear RNA polymerases were purified based on their
ability to synthesize a polyribonucleotide copy of a calf thymus DNA template
(482). These purified RNA polymerases were incapable of initiating transcription
selectively at promoters in vitro (reviewed in 85, 506). Basal or general tran-
scription factors (GTFs) that reconstituted efficient selective initiation by purified
RNA polymerase II were identified by fractionation of cellular extracts (reviewed
in 113, 211, 424, 473, 480). Purified RNA polymerase II and GTFs alone, how-
ever, did not fully reconstitute the response to transcriptional regulators observed
in vivo, suggesting that an additional apparatus is necessary for gene regulation in
living cells.

Knowledge that the DNA template is packaged into chromatin in vivo prompted
genetic, biochemical, and structural studies to understand the roles of nucleo-
somes and nucleosome-modifying machinery in gene regulation. Promoters for
protein-coding genes contain sites bound by transcriptional activators, and activa-
tors recruit both chromatin-modifying factors and the transcriptional machinery
(reviewed in 303, 461, 493, 533) (Figure 1, see color plate). The importance of
chromatin modification in gene expression was emphasized by the discovery that
chromatin-modifying enzymes are components of multiple complexes involved
in transcription initiation and elongation. These factors act by chemically mod-
ifying nucleosomes, as is the case with the Gcn5 acetyltransferase of the SAGA
complex, or through noncovalent modifications, as in the case with the Swi/Snf
complex (reviewed in 34, 56, 73, 245, 248, 291, 304, 314, 391, 580, 587, 615, 620).

The RNA polymerase II transcription apparatus recruited to promoters and the
form of polymerase engaged in elongation are both considerably more complex
than previously imagined. Transcriptional activators recruit RNA polymerase II to
promoters in a holoenzyme form consisting of GTFs and a multiprotein complex
called the Srb/Mediator (reviewed in 39, 42, 197, 212, 302, 342, 369a). Actively
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elongating RNA polymerase II molecules are associated with elongation factors
(reviewed in 475, 513, 515, 516, 573). Protein complexes involved in RNA capping,
polyadenylation and perhaps splicing can also associate with RNA polymerase II
(reviewed in 37, 116, 661).

The convergence of information from biochemical, genetic, genomic, and struc-
tural studies has greatly increased our understanding of gene regulation in eukary-
otes during the past decade. We review here fundamental aspects of gene regulation,
focusing on advances in our understanding of the chromatin template, activation
and repression, the complexes that regulate chromatin structure, and RNA poly-
merase II and its initiation, elongation, and processing cofactors.

THE CHROMATIN TEMPLATE

We briefly review the DNA sequences that are recognized by transcriptional regu-
lators and components of the transcription apparatus. We also describe how DNA
is packaged into chromatin, and its implications for gene regulation.

Promoter and Other DNA Elements
Basic Promoter Structure There are at least three features common to most pro-
moters for protein-coding genes: the transcription start site, the TATA box, and
sequences bound by transcriptional regulators (reviewed in 43, 413, 522, 531).
The core promoter element, which consists of the start site and the TATA box, is
sufficient for directing transcription initiation by the basal transcription machin-
ery. The sequences bound by transcriptional regulators include Upstream Activat-
ing Sequences (UASs), enhancers, Upstream Repressing Sequences (URSs), and
silencers.

Core Promoter Element:TATA and Transcription Initiation Site The average
core promoter element encompasses approximately 100 bp and contains the tran-
scription initiation site. An AT-rich site called the TATA box is located upstream
of the start site; its location is 25 to 30 bp upstream in higher eukaryotes and 40 to
120 bp upstream in yeast (reviewed in 531). The TATA box is the binding site for
the TATA-binding protein (TBP). Although a canonical sequence can be derived
for TATA boxes, TBP can bind and function at a broad range of sequences, making
it difficult to identify genuine TBP-binding sites from sequence alone (117, 210,
338, 520, 613).

In some genes, the transcription initiation site includes an initiator (Inr) element
(521, 522), defined here as an element encompassing the transcription start site
that binds regulatory factors. Various factors can bind to Inr elements, and these
may facilitate recruitment of the transcription apparatus (14, 77, 274, 485, 486,
575, 583).

Core promoters can contain TATA and Inr elements (composite), either ele-
ment alone (TATA- or Inr-directed), or neither element (null) (413). Composite
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promoters are found primarily in viral genes; most cellular class II genes contain
TATA-directed promoters and a more limited number contain Inr-directed promot-
ers. The null promoters often have multiple transcription start sites, suggestive of
imprecise initiation (180, 251, 357).

Although core promoter elements are fundamental for binding of the general
transcription apparatus, both the composition and context of the sequence can in-
fluence transcriptional regulation. Experiments that exchange TATA boxes and
Inr elements reveal that the composition of core promoters can mediate lineage-
specific (145, 174), temporal (216), and spatial regulation of gene expression
(503).

Upstream Activating Sequences and EnhancersTranscriptional activators bind
to sequences that have been termed UASs or enhancers (reviewed in 43, 389, 531).
The term UAS is typically used to describe elements bound by activators that
influence transcription from nearby start sites. Enhancers are clusters of DNA-
binding sites for transcriptional regulators that influence transcription independent
of their orientation and at distances as great as 85 kb from the start site (reviewed
in 43).

Upstream Repressing SequencesDNA elements bound by sequence-specific
gene repressors are called URSs. URS-bound factors inhibit transcription through
various mechanisms, including interfering with activator binding, preventing re-
cruitment of the transcription apparatus by the activator, and modifying chromatin
structure (reviewed in 215, 264, 296, 368, 418, 447, 531, 534).

Silencers Classical silencers were defined as sequence elements that can repress
promoter activity in an orientation- and position-independent fashion (reviewed
in 418). The best-characterized examples are involved in silencing of the mating-
type genes at the HMR and HML loci inSaccharomyces cerevisiae. Two DNA
elements, E and I, contain binding sites for Rap1, Abf1, and the origin recog-
nition complex and are essential for silencing that requires Sir proteins and hi-
stones H3 and H4 (reviewed in 204, 352, 362). The silencer acts in a distance-
and orientation-independent manner. The DNA of the silent domain is thought
to be transcriptionally repressed due to the interactions of histone and silencing
proteins that cooperatively coat the region and possibly to targeted deacetylation
(244).

In higher eukaryotes, a CpG dinucleotide motif has been implicated in silencing
mediated by methylation (reviewed in 8, 313, 409, 470).

Other Elements Locus control regions (LCRs) are similar to enhancers in that
they consist of multiple activator binding sites, but are often complex arrangements
of multiple regulatory elements (reviewed in 165, 199, 337). The two elements
differ in that classical enhancers are orientation- and distance-independent, yet
their effect can depend on the site of integration into native chromatin, apparently
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because the effects of chromatin structure can dominate the function of the en-
hancer. In contrast, LCRs stimulate transcription independent of their site of inte-
gration into native chromatin, although their effects are limited by orientation and
distance (reviewed in 61, 149, 165, 199, 337).

Enhancers, LCRs, and silencers can increase or decrease expression of multiple
genes within regions of the genome. Additional DNA elements can limit the ef-
fects of these regulatory elements, thus subdividing chromosomes into active and
inactive regions. Insulators block enhancer function and barriers block the spread
of heterochromatin-like silenced domains (reviewed in 32, 33, 537).

Chromatin Structure

The compaction of DNA that occurs through packaging is necessary to fit into the
limiting confines of the nucleus. DNA is packaged into a nucleoprotein complex
known as chromatin, consisting of a 2:1 mass ratio of protein to DNA.

Nucleosomes The fundamental repeating unit of chromatin is the nucleosome,
which is generally comprised of 146 bp of DNA wrapped 1.65 turns around an
octamer of histone molecules, the linker DNA between adjacent histone octamers,
and members of a class of linker histones that bind the linker DNA and nucleosome
core (305, 666). The co-crystal structure of a histone octamer-DNA complex shows
that the histones form a rough cylinder comprised of two heterodimers of histones
H3 and H4, flanked by two heterodimers of histones H2A and H2B (358). The
crystal structure revealed three features of the nucleosome with implications for
gene expression. First, DNA wraps tightly around the core particle and is held in
place via multiple interactions between histones and the phosphate backbone or
deoxyribose moieties. Second, the arrangement of DNA around the core allows for
interactions between the amino-terminal tails of histones and adjacent nucleosome
particles. Third, the DNA wrapping about the nucleosome is irregular, providing
a degree of flexibility or instability in the structure that may play a role during
localized perturbation of histone-DNA interactions critical for gene expression
(305, 358, 359).

The four histone subunits that compose the octamer are among the best-conser-
ved proteins in eukaryotes. There are variants reported for a number of his-
tone subunits that appear to have roles in gene-specific transcription. The pres-
ence of these variants correlates with induced gene expression in proliferating
cells (76), and altered gene expression patterns in chicken (547). In one case,
the regions of the variant required for function have been mapped to regions of
the histone that are buried in the nucleosome core, suggesting that the alterna-
tive structures may influence general nucleosome stability (106). The packaging
of promoters into chromatin has been commonly regarded as a general deter-
rent to transcription (reviewed in 201, 439, 469, 615). Early in vitro experi-
ments with bacterial and eukaryotic polymerases and chromatinized templates
demonstrated that nucleosomes could inhibit transcription initiation (295, 354),
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whereas preincubation with the transcription apparatus prior to nucleosome for-
mation allowed transcription to occur (294, 617). In vivo experiments also sup-
ported this model as depletion of histone subunits in yeast led to increased tran-
scription of certain genes (138, 213, 214, 287, 624). The combination of tight
histone-DNA contacts and the organization of nucleosomes into higher-order
structures can restrict access to DNA by proteins involved in transcription. Con-
sistent with this model, disruption of nucleosome structure can enhance bind-
ing of activators (121, 318, 431) and components of the transcription apparatus
(246).

Nucleosomes can potentiate as well as repress gene expression (105, 139, 499,
510, 624). For example, genome-wide expression analysis in yeast revealed that a
reduction of nucleosome density leads to increased expression of some genes and
decreased expression of others (624). Several mechanisms have been identified for
nucleosome-potentiated gene expression (Figure 2, see color plate). Activation of
the mouse mammary tumor virus promoter involves synergistic interactions be-
tween multiple transcription factors that occur when their binding sites are appro-
priately positioned by nucleosomes (92). Estrogen-regulated transcription of the
Xenopusvitellogenin B1 promoter is potentiated by generation of a nucleosome-
dependent loop (499). The mouse transcriptional activator Hnf3 can stably bind its
target sequence only when the DNA is packaged into a nucleosome (105). Thus,
packaging of DNA into chromatin likely provides a distinct physical context for
each promoter, thereby increasing the options available to cells for regulation of
specific genes.

Higher-Order Chromatin Structure Nucleosomes are coiled or folded into chro-
matin fibers (439, 578, 665). Linker histones such as histone H1 have been im-
plicated in this organization (reviewed in 31, 468, 555, 564, 578, 588, 608, 614).
The flexible amino-terminal histone tails that protrude from nucleosomes may
also promote fiber formation, either through direct contact with nucleosomes or
by interactions with linker DNA (158, 392, 502; reviewed in 159, 359, 578).

ACTIVATION AND REPRESSION

Gene-specific transcriptional activation is generally effected by the binding of
transcriptional activators to upstream activating sequences, where they recruit and
regulate the activities of chromatin-modifying complexes and the transcription
apparatus (Figure 1). Regulation of gene expression generally involves an interplay
between activators and repressors.

Activators and Mechanisms

Activators typically consist of two domains: one that binds specific DNA sequences
and one that recruits or stimulates the activity of the transcription apparatus (461,
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565). A single activator is frequently used to activate multiple genes in a genome,
thus providing a mechanism for coordinate control of those genes. Individual
genes can be regulated through the action of multiple activators, thereby providing
a mechanism for combinatorial control.

Enhanceosomes are formed by the binding of multiple transcriptional regulators
to sites in enhancer DNA. The arrangement of binding sites in the enhancer element,
the protein-protein interactions of the complement of activators, and the addition of
architectural proteins all contribute to the stability and function of enhanceosomes
(60, 183, 284, 554; reviewed in 78, 198, 371). The formation of enhanceosomes
has several advantages for gene activation. Depending on the nature or state of the
cell, different combinations of regulators can be assembled into an enhanceosome.
The assembly of these activators can be cooperative, and thus low concentrations of
activators are capable of a large range of transcription activation. The arrangement
of multiple activators in a single complex provides the capacity to integrate multiple
regulatory inputs into a single output.

Recruitment of Chromatin Modifying Complexes Transcriptional activators can
recruit chromatin-modifying complexes such as Swi/Snf and SAGA (PCAF) to
promoters (44, 120, 243, 309, 406, 407, 451, 462, 576, 644, 647). The impor-
tance of chromatin modification in transcriptional regulation is supported by the
observation that histone acetylases are components of many transcriptional coacti-
vators (see section on Chromatin Modification). Compelling evidence for the role
of certain activators in recruiting chromatin-modifying complexes in vivo comes
from the study ofHO gene activation in yeast, where the transcriptional activa-
tor Swi5 recruits the Swi/Snf chromatin modification complex and the SAGA hi-
stone acetylase prior to association of a second activator, SBF, which recruits the
transcription initiation apparatus (120).

Recruitment of Transcription Initiation Apparatus Activators bind and thereby
recruit the RNA polymerase II–containing transcription initiation apparatus (re-
viewed in 461). At least two arguments support this model. First, many investiga-
tors have observed direct binding between activation domains and components of
the transcription machinery in vitro (reviewed in 25, 68, 211, 461, 584). Multiple
lines of biochemical and genetic evidence indicate that certain activator targets
are physiologically relevant (298, 383, 622). Second, if the role of the activa-
tion domain is to bind and recruit the transcription apparatus, then fusions of
DNA-binding domains to components of the transcription apparatus should by-
pass the requirement for an activation domain. This prediction is borne out in
experiments with “artificial activators,” where the fusion protein can substitute
for the genuine activator in vivo (10, 27, 90, 152, 175, 176, 187, 261, 275, 292,
625).

A spectrum of models describes activator-dependent recruitment of the tran-
scription apparatus to promoters (Figure 1). At one extreme, the apparatus may
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be recruited factor by factor; activators would presumably affect a rate-limiting
step. At the other extreme, most or all of the initiation apparatus is recruited as a
single complex; here, activators would only need to bind a single component of
the complex. Gene activation at the thousands of promoters in a living cell may
involve the entire spectrum of mechanistic possibilities.

The transcription apparatus was initially identified and characterized through
chromatographic purification of discrete factors necessary to reconstitute tran-
scription with RNA polymerase II in vitro (reviewed in 113, 211, 424, 473, 480).
Given the identification of numerous factors by this process, early models of gene
regulation proposed that many proteins and complexes were assembled in a step-
wise fashion at promoters (63, 160). Significantly, most of these assays required
that transcriptional activity be dependent on added core RNA polymerase II, in
part because a number of transcriptional activities contaminated the various chro-
matographic fractions.

The identification and purification of large transcription-competent complexes
containing RNA polymerase II, general transcription factors, and additional pro-
teins necessary for the response to activators suggested that activators can recruit
much of the transcription apparatus in one or a few steps (289, 301, 428; reviewed
in 197, 302). Several of the yeast and metazoan RNA polymerase II holoen-
zyme preparations appear to contain most of the transcription initiation apparatus
(88, 101, 301, 408, 427, 428, 435, 609). In vivo crosslinking experiments with
various yeast mutants have demonstrated that a functional Srb4-containing RNA
polymerase II holoenzyme is required for stable binding of TBP to promoters, in-
dicating that formation of a stable initiation apparatus is concerted, and consistent
with the possibility that stable assembly of the transcription initiation apparatus at
promoters effectively occurs in a single step (317, 340).

The concept that has emerged is that a transcription initiation apparatus that
approximates the size and complexity of the ribosome is assembled at promot-
ers under the control of, and with the capacity to respond to, combinations of
gene-specific regulators bound to enhancers. The modularity of the transcription
initiation apparatus enables the cell to recruit components of this initiation appa-
ratus in multiple steps or, if the apparatus is already fully assembled, in a single
concerted step.

Other Functions for Activators Activators can also function by influencing the
activity of the transcription apparatus. For example, the HIV-1 transcriptional
activator Tat stimulates the processivity of RNA polymerase II (reviewed in 171,
259, 272, 479, 483, 638). Certain activators increase the overall elongation rate of
polymerase, possibly by stimulating the rate of promoter escape or polymerase II
processivity (45, 57, 308, 639).

Some activators may also stimulate multiple rounds of transcription at highly
expressed genes by facilitating reinitiation (532, 650). The mechanisms of such
stimulation are unclear but may involve stabilization of elements of the transcrip-
tion apparatus that remain after promoter escape (209).
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Repressors and Mechanisms

The variety of known transcriptional repressors and mechanisms suggests that
negative regulation is of critical importance to cells. The fact that these repressors
are evolutionarily conserved supports this view. The repressors can be divided into
two classes: general and gene specific.

Many general negative regulators function via interactions with the TATA-
binding protein (328). Mot1 represses transcription at a subset of class II genes by
binding TBP-DNA complexes and causing dissociation of TBP from the DNA in
an ATP-dependent manner (18, 340, 396, 592). NC2 (Dr1/DRAP1) is a general
negative regulator of class II and class III gene expression (170, 189, 252, 283,
386, 456). NC2 binds to the basic repeat domain of TBP on promoter DNA and can
prevent the RNA polymerase II holoenzyme, or its TFIIB subunit, from assembling
into an initiation complex (190, 252, 279, 286, 382, 386).NOTgenes have been
identified in a screen for suppressors of a defect in the Gcn4 transcriptional activator
and in additional genetic screens as negative regulators of cell cycle, pheromone
response, and filamentous growth genes (71, 109, 110, 166, 253, 326, 395, 416,
471). The protein products of these genes form one or more complexes (21, 36, 110,
348). Biochemical and genetic evidence has linked Not proteins physically and
functionally to TBP (109, 110, 327), but their mechanism of action is not yet
understood.

Many gene-specific repressors function by binding to activators or by compet-
ing for activator binding sites. For example, the chaperone Hsp90 binds to the
heat shock transcription activator Hsf1, preventing the formation of Hsf1 trimers
required for binding of the heat shock DNA element (667). The Gal80 protein
represses the Gal4 activator by binding to a portion of its activation domain (336,
363, 519). Repressor proteins can also compete with activators by binding to over-
lapping sites in DNA, as is the case for the Acr1 repressor and the ATF/CREB
activator (589). Gene-specific repressors also include cofactors such as Ssn6-Tup1
that are recruited to specific promoters by DNA-binding factors and repress via in-
teractions with components of the transcription apparatus or chromatin (reviewed
in 79, 596).

Histone deacetylases can repress in a gene- or location-specific manner through
their action on chromatin, as discussed in detail below. Histone deacetylase com-
plexes such as the mSin3A complex or NuRD are targeted to regions of DNA by a
number of mechanisms (reviewed in 19, 296). These deacetylase complexes can
be recruited directly by DNA-binding proteins or by co-repressors such as N-Cor,
SMRT, Rb, and Groucho, which are in turn recruited by specific DNA-binding ac-
tivators. Deacetylase activity is also linked to repression mediated by methylated
DNA. The mSin3A complex can interact with the methylated DNA-binding pro-
tein, MeCP2, and repression mediated by MeCP2 requires this deacetylase activity
(265, 405). NuRD contains or interacts with two proteins, MBD3 and MBD2, that
have methyl-binding domains similar to MeCP2. Interactions between MBD2 and
NuRD can direct the deacetylase complex to methylated DNA (659).
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Interplay Between Activation and Repression

Molecular genetic studies in yeast indicate that regulated gene expression involves
a balance of positive and negative regulators in vivo. In at least two instances,
genetic selections have demonstrated that a deficiency in a positive factor or DNA
element can be compensated by the loss of function of any one of several negative
regulators (327, 456, 457). In one case, suppressors of a temperature-sensitive
mutation in theSRB4gene were isolated; Srb4 protein is an essential component
of the RNA polymerase II holoenzyme and is a target of at least one transcriptional
activator (298, 557). The suppressors included partial loss-of-function mutations
in the negative regulators NC2 and the Not complex (327). In another selection,
suppressors of a UAS deletion mutation in theSUC2gene were isolated; these
suppressors included loss-of-function mutations in NC2, Mot1, and histone H3
(456, 457). These data indicate that expression of specific genes can occur in the
absence of fully functional activators or coactivators when the function of certain
repressors is compromised.

The argument for an active interplay between positive and negative regulators
in vivo is further strengthened by the fact that defects in positive regulators for
transcription can compensate for loss-of-function mutations in negative regulators
of transcription. Defects in either subunit of NC2 can be rescued by loss-of-function
mutations in the Sin4 subunit of the mediator (282). Additional genetic evidence
suggests that similar balances exist between negative regulators (Nots, Mot1, and
NC2) and positive factors (SAGA acetyltransferase complex and TFIIA) (108,
331, 364, 627).

CHROMATIN MODIFICATION

The packaging of DNA into nucleosomes and then into higher-order structures
has been regarded as generally repressive of transcription (reviewed in 201, 439,
469, 615). It now appears that packaging of DNA into nucleosomes can repress
or potentiate gene expression, depending on the requirements of the promoter
(see section on The Chromatin Template). Higher-order chromatin structure in-
volves nucleosome-nucleosome contacts mediated, in part, by the N-terminal
tails of histones (392, 566, 665). An excellent correlation exists between acety-
lation of the N-terminal tails of histones, disruption of higher-order chromatin
structure, and transcriptional activity. Similarly, there is a good correlation be-
tween histone deacetylation, the formation of higher-order structure, and repres-
sion of transcription (reviewed in 129, 305, 526).

Covalent Modifications of Histones

Histones are modified by acetylation, phosphorylation, methylation, and ubiquiti-
nation (Table 1). In many instances, the precise sites of modifications have been
identified (Figure 3). For example, histone H3 is primarily acetylated at lysines
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Figure 3 Sites of covalent modifications of histones. The sites for acetylation (Ac), phos-
phorylation (P), methylation (Me), and ubiquitination (Ub) in core histones (modified from
526).

9, 14, 18, and 23, phosphorylated at serine 10, and methylated at lysines 9 and 27
(526). Combinatorial modifications to histone tails may serve as a code to instruct
cellular actions on the DNA template such as assembly, mitosis, transcription, or
replication (529).

Histone acetylation is the best understood of the histone modifications, both
in terms of the residues affected and the consequences for transcriptional ac-
tivity. Several lysines on the N-terminal tail of each of the core histones can
be reversibly acetylated. Considerable evidence supports a positive link between
acetylation of histone tails and transcriptional activity. Hyperacetylated histones
are stably associated with transcriptionally active domains and more accessible
chromatin structure, whereas hypoacetylated histones are enriched in regions that
are transcriptionally silent (219, 220, 598, 654). The enzymes involved in histone
acetylation and deacetylation are described in detail in the next section.

The relationship between histone acetylation and transcriptional activity may
involve more than one mechanism. Since acetylation disrupts higher-order chro-
matin structure (173, 567, 597, reviewed in 526), it may provide greater access
to DNA sequences for the transcription apparatus and its regulators. Acetylation
of the histone tail may disrupt nucleosome structure by neutralizing positively
charged lysines, thus decreasing their affinity for DNA or neighboring nucleo-
somes (201, 359). Acetylation may also influence transcription by promoting or
suppressing interactions with specific transcription factors (129, 615, 616).

Histone tails are also modified by phosphorylation. Phosphorylation of his-
tones H1 and H3 has been implicated in chromosome condensation during mitosis
(50, 307, 606, 607). Phosphorylation of H3 has also been linked to increased
transcriptional activity. For example, histone H3 phosphorylation correlates with
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TABLE 1 Enzymes that covalently modify histones

Protein Organism Comment

Acetylation
p55 T. thermophila Gcn5-like
p80 T. thermophila Preferentially acetylates H4
Hat1 S. cerevisiae B-type HAT, acetylates H4, believed to

function in cytoplasm
yGcn5 S. cerevisiae Transcriptional coactivator
Hpa2 S. cerevisiae Gcn5-like, similar to yeast Hpa3
Esal S. cerevisiae MYST family, essential for viability
Sas3 S. cerevisiae MYST family, highly similar to yeast Sas2
Elp3 S. cerevisiae Associates with elongating RNA polymerase II
TAFII145 S. cerevisiae Subunit of yeast TFIID
HatA Z. mays Two forms, A1 and A2 identified
HatB Z. mays B-type HAT
dTAFII230 D. melanogaster Subunit of Drosophila TFIID
xHat1 X. laevis Acetylates free H4
hTAFII250 H. sapiens Subunit of human TFIID
TFIIIC220 H. sapiens Subunit of human TFIIIC
TFIIIC110 H. sapiens Subunit of human TFIIIC
TFIIIC90 H. sapiens Subunit of human TFIIIC
hHat1 H. sapiens Acetylates free H4
hGcn5-L H. sapiens Gcn5-like, transcriptional coactivator
PCAF H. sapiens Gcn5-like, transcriptional coactivator
CBP/p300 H. sapiens Transcriptional coactivator
SRC-1 H. sapiens Nuclear receptor coactivator, family includes

TIF2/GRIP1
ACTR H. sapiens SRC family, isoforms include RAC3,

TRAM1, AIB1, p/CIP
HBO1 H. sapiens MYST family, binds origin recognition complex
MORF H. sapiens MYST family, similar to human MOZ and

Drosophila MOF
Tip60 H. sapiens MYST family, HIV-1-Tat interacting protein

Deacetylation
Rpd3 S. cerevisiae Involved in repression
Hda1 S. cerevisiae Deletions affect acetylation level in vivo
Hos3 S. cerevisiae Forms homodimer that has intrinsic activity
ySir2 S. cerevisiae Involved in aging, NAD+ dependent
HD1A Z. mays
zmRpd3 Z. mays HDIB-1
HD2 Z. mays Nucleolar phosphoprotein
dRpd3 D. melanogaster Affects silencing and position effect variegation
dHDAC3 D. melanogaster
xRpd3 X. laevis Associates with multiple complexes
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mHda2 M. musculus Contains two HDAC domains
mHDAC1 M. musculus
mHDAC2 M. musculus
mHDAC3 M. musculus
mHDAC5 M. musculus Previously mHdal
HDAC1 H. sapiens Recruited by many DNA-binding

regulators w/HDAC2
HDAC2 H. sapiens Recruited by many DNA-binding

regulators w/HDAC1
HDAC3 H. sapiens Can associate with HDAC4 and HDAC5
HDAC4 H. sapiens Cellular localization may regulate activity
HDAC5 H. sapiens Can bind N-CoR/SMRT corepressors
HDAC6 H. sapiens Contains two HDAC domains
HDAC7 H. sapines Can interact with SMRT corepressor
HDAC8 H. sapiens Tissue-specific expression differs

from other HDACs
hSir2 H. sapiens Involved in aging, NAD+ dependent

Phosphorylation
JIL-1 D. melanogaster Associated with dosage compensation
Rsk-2 H. sapiens Phosphorylates H3 Ser 10, implicated in

Coffin-Lowry disease
MSK1 H. sapiens Phosphorylates H3 Ser 10

Methylation
CARM1 H. sapiens Arginine-specific, histone H3

methyltransferase activity

TABLE 1 (Continued

Protein Organism Comment

(

activation of SV40 immediate early genes (80, 365, 558). Several histone kinases
are associated with transcriptionally active states. Cells deficient in the Rsk-2 H3
kinase display altered transcription activation patterns (130, 492). The Msk1 ki-
nase, which is activated by growth factor, phosphorylates histone H3 (558). The
Jil-1 kinase, which is involved in dosage compensation in Drosophila, also phos-
phorylates histone H3 (263).

Histones can be reversibly ubiquitinated, primarily on histone H2A but also on
H2B and H3, and these ubiquitinated histones are associated with transcriptionally
active DNA. Ubiquitination is dependent on ongoing transcription (128), possibly
because transcription is required to expose the regions of histones that are typically
ubiquitinated (128). The addition of ubiquitin may serve to disrupt nucleosome
structure (526), but a regulatory role for histone ubiquitination in transcription is
not yet firmly established.

Histones H2B, H3, and H4 can also be methylated, but the effects of histone
methylation on transcription remain poorly understood. Methylation is associated
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with acetylated isoforms of H3 and H4 (7, 223, 224), suggesting that methylation,
acetylation, and transcriptional activation may correlate in some cases. This idea
is supported by evidence that a histone methyltransferase, CARM1, is required for
ligand-dependent activation of some nuclear hormone receptors (93).

Histone Acetyltransferases
Linking Transcription and Histone Acetylation The key discovery linking tran-
scription and acetylation was the identification of aTetrahymenaprotein, p55,
which had histone acetyltransferase (HAT) activity and was related to a yeast pro-
tein, Gcn5 (59). As Gcn5 had previously been identified as a transcriptional co-
factor (372), this finding provided a functional connection between acetylases and
transcriptional activation. Chromatin in the region of Gcn5-dependent promoters
shows increased acetylation of histone subunits upon stimulation of transcription
by Gcn5 (316). Mutations in the HAT catalytic domain affected both the ability
to activate transcription and the acetylation of promoter-proximal histones (316,
601). Now that a large number of HATs have been described, the fact that many
are components of previously identified transcriptional coactivators underscores
the functional link between acetylation and activation.

HATs Are Associated with Multisubunit ComplexesBiochemical fractionation
revealed that Gcn5 can be purified in multiple complexes capable of acetylating
histones in the context of the nucleosome octamer. One of these is SAGA, named
for the Spt, Ada, and Gcn5 Acetyltransferase components (193). The Spt and Ada
genes were previously identified as regulators involved in start site selection and
transcriptional activation (reviewed in 611). SAGA shares a number of subunits
with the TFIID general transcription factor (192). Gcn5 exists in at least one
other complex called the ADA complex (142). Recombinant Gcn5 can acetylate
histones in vitro, but not nucleosomes (315, 637). As part of the multiprotein
complexes, Gcn5 gains the ability to acetylate nucleosomes and the ability to
acetylate additional lysines (194).

Numerous acetyltransferases and acetyltransferase complexes have been iden-
tified (Table 2). Histone acetyltransferases (HATs) can be grouped by cellular
location into two classes (58). Type A HATs are localized in nuclei and most
likely acetylate nuclear factors. In contrast, type B HATs are cytoplasmic and are
believed to acetylate newly synthesized histones as part of the process of histone
assembly (249, 293, 353, 441).

Coactivators with HATs Two yeast and three human complexes have been pu-
rified that contain Gcn5-like histone acetyltransferases (54, 142, 192, 377, 419).
Given the observation that the substrate specificity of Gcn5 can be influenced
by its association with other proteins, each of these complexes may have dis-
tinct roles. However, it is also possible that the multiple Gcn-5 complexes are
derived from a single large complex in vivo that is torn asunder during column
chromatography.
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TABLE 2 HAT complexes

HAT complexes HAT Subunit Organism Complex activity

Hat1 complex Hat1 S. cerevisiae Acetylates free H4, not nucleosomal

ADA Gcn5 S. cerevisiae Acetylates nucleosomal H3

SAGA Gcn5 S. cerevisiae Acetylates nucleosomal H3 and H2B
Interacts with activators and
transcription machinery

NuA3 unknown S. cerevisiae Acetylates nucleosomal H3

NuA4 Esa1 S. cerevisiae Acetylates nucleosomal H4 and H2A

yTFIID TAFII145 S. cerevisiae Acetylates free H3 and H4
Core promoter factor

Elongator Elp3 S. cerevisiae Acetylates H2A, H2B, H3, H4
Associated with elongating RNA
polymerase II

HatB complex HatB Z. mays Acetylates free H4
Associates with RbAp-related protein

dTFIID dTAFII230 D. melanogaster Acetylates free H3 and H4
Core promoter factor

Hat1 complex xHat1 X. laevis Acetylates free H4
Associates with RbAp48 and 14-3-3
proteins

hHat1 hHat1 H. sapiens Acetylates free H4
Associates with RbAp46/48

hTFIID hTAFII250 H. sapiens Acetylates free H3 and H4
Core promoter factor

TFTC Gcn5-L H. sapiens Acetylates nucleosomal H3
Can substitute for TFIID in vitro

STAGA Gcn5-L H. sapiens Likely identical to TFTC

PCAF PCAF H. sapiens Transcriptional coactivator
Interacts with other HAT coactivators
Interacts with DNA-binding regulators
Acetylates nucleosomal H3
Acetylates TFIIF, TFIIE, p53

TFIIIC p220 H. sapiens Acetylates H2A, H3 and H4
p110 Core promoter factor for RNA

polymerase III
p90
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Many DNA-binding transcription factors, including CREB, p53, and nuclear
hormone receptors, bind to a set of coactivators called p300/CBP. p300 and CBP
are two highly related proteins that apparently regulate overlapping sets of genes
(143, 184). Both p300 and CBP have HAT activity (24, 420) and may function in
cooperation with additional coactivators such as PCAF, SRC-1, TIF2/GRIP1, and
RAC3/TRAM1/AIB1/PCIP/ACTR (reviewed in 95, 332). Many of these coacti-
vators also contain acetyltransferase activity, indicating that activators can recruit
multiple HATs for full stimulation of transcription (94, 525, 637). Recent exper-
iments suggest that although a coactivator complex can contain multiple acetyl-
transferases, transcription activation may require the activity of only one of these
factors at any single promoter (306, 462).

Targeting of Acetyltransferases In general, HAT activity is restricted to gene-
specific effects via interactions with DNA-binding activators (Figure 2). For ex-
ample, recruitment of the SAGA complex to theHO promoter is dependent on the
transcriptional activator Swi5 (120). SAGA and NuA4 interact with specific sub-
sets of activation domains (243, 406, 576). Experiments in yeast demonstrate that
gene-specific targeting via interactions with DNA-binding activators can result in
increased acetylation of promoter-bound histones in vitro (243, 576) and transcrip-
tional activation of target genes in vivo (316). In mammalian cells, p300/CBP is
targeted by various cellular and viral factors (143, 258) including activators like
c-jun and nuclear hormone receptors like Pit-1, MyoD, or CREB (306, 462). As
mentioned previously, p300/CBP may serve as a binding platform for the recruit-
ment of additional cofactors, some of which also contain acetyltransferase activity.

A novel acetyltransferase, Elp3, has been identified as a component of yeast
Elongator, a complex that tightly associates with elongating RNA polymerase II
(612). This physical link between an acetylase and RNA polymerase II might
provide a means to modify the acetylation state of nucleosomes in transcribed
regions of chromatin (612).

Histone versus Factor AcetyltransferasesHistone acetyltransferases can acety-
late substrates other than histones (reviewed in 38, 314), including DNA-binding
activators such as p53 (203), EKLF (656), GATA-1 (49, 242); architectural pro-
teins like HMG-I or HMG-17 (228, 397); and the general transcription factors
TFIIE and TFIIF (250). Acetylation of factors appears to have both positive and
negative effects on transcription, in some cases at the same promoters. For exam-
ple, targeted acetylation of histones at the IFN-beta promoter occurs early during
viral infection and requires CBP, consistent with a model where acetylation of
histones is required for gene activation. CBP and PCAF also acetylate HMG-I,
which is the architectural component of the assembly of activators (enhanceosome)
that stimulates IFN-beta transcription. Acetylation of HMG-I reduces its affinity
for DNA, destabilizing the enhanceosome and reducing IFN-beta transcription in
vitro (440). p53 is another interesting example of factor acetylation. Acetylation
by CBP/p300 and PCAF both enhance p53’s DNA-binding activity even though
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the two factors acetylate different sites on p53. Both sites display increased acety-
lation upon stimulation of p53 function, suggesting that the combinatorial action
of acetyltransferases may be critical for regulation of function (349, 490).

Histone Deacetylases
Linking Transcription and Histone Deacetylation Histone deacetylases were
linked to transcription when the purification and peptide sequencing of histone
deacetylases revealed sequence similarities to transcriptional regulators previously
identified in yeast. The first histone deacetylase, HDAC1, was purified and cloned
based on its ability to bind the deacetylase inhibitor trapoxin (553). HDAC1 proved
to be similar to yeast Rpd3, which had been identified as a transcriptional regu-
lator through a genetic selection (585). In separate work, fractionation of yeast
extracts identified two distinct deacetylation activities, HDA and HDB (488). The
catalytic subunits of these complexes were identified as the Hda1 (HDA complex)
and Rpd3 (HDB complex) proteins (488). Null mutations in HDA1 or RPD3 result
in hyperacetylation of the N-terminal tails of histones H3 and H4 (488). Deacety-
lases have been identified as common components of corepressors recruited by
diverse DNA-binding regulators, indicating that deacetylases play a general role
in repression of gene expression.

HDACs Are Associated with Multiprotein ComplexesLike acetyltransferases,
deacetylases are found in multiprotein complexes. Two corepressor complexes,
Sin3 and NuRD (which is highly similar or identical to NURD, NRD, and Mi-2
complex), have been characterized thus far. In mammalian cells, both complexes
contain a core of HDAC1, HDAC2, and histone binding proteins RbAP46 and
RbAP48 (659; reviewed in 19, 296). The assembly of the core HDAC into larger
complexes affects both the substrate specificity and corepressor interactions of the
core HDAC complex (319, 660).

Sin3 complexes are characterized by the presence of the corepressor Sin3. In
mammalian cells, there are two isoforms of Sin3, mSin3A and mSin3B. Both
are similar to the yeast transcription regulator Sin3 (20). The yeastSIN3gene
functions in the same genetic pathway asRPD3(528, 585, 586), providing an early
indicator that deacetylation might explain Sin3-mediated repression. mSin3A was
originally identified as a corepressor for the DNA-binding repressor Mad-Max (20,
501). Several groups have now demonstrated that deacetylases associate with Sin3
in yeast and mammalian systems and that deacetylation is essential for full Sin3-
mediated repression (3, 218, 221 320, 402, 657).

In mammalian systems, HDAC1 and HDAC2 also exist in the NuRD complex
(563, 593, 629, 658). NuRD is characterized by the presence of two closely re-
lated proteins, CHD3 and CHD4 (also known as Mi-2α and Mi-2β, respectively).
CHD3/CHD4 are similar to the Swi/Snf family of DNA-dependent ATPases that
remodel chromatin, and as might be expected, NuRD is capable of remodeling
nucleosomes in an ATP-dependent fashion. The deacetylase activity of NuRD
is stimulated by the addition of ATP, suggesting that the remodeling ability of
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the complex may be used in vivo to facilitate access to histone tails in complex
chromatin structures (563, 593, 629, 658).

A number of HDACs have now been identified (Table 1). In yeast, there are at
least five deacetylases, Rpd3, Hda1, Hos1, Hos2, and Hos3, that are grouped into
class I (Rpd3-like) and class II (Hda1-like) families. In humans, eight deacetylases
have been identified—the class I members HDAC1, HDAC2, HDAC3, and HDAC8
(29, 148, 239, 634, 635, 653) and the class II members HDAC4, HDAC5, HDAC6,
and HDAC7 (200, 271). More recently, the Sir2 protein, which is involved in
gene silencing, was demonstrated to be an NAD-dependent histone deacetylase,
suggesting that there is additional diversity in the deacetylases of eukaryotic cells,
and linking deacetylation to silencing and aging in yeast and mammalian cells
(244). A fourth type of deacetylase has been isolated in maize, but it is unclear if
this deacetylase has roles in transcription (361).

Targeting of Deacetylases mSin3A complexes are capable of diverse interac-
tions with DNA-binding regulators and corepressors, reflecting the diverse mech-
anisms employed to direct deacetylase activity to specific promoters or sets of
promoters (Figure 4) (reviewed in 19, 296). The deacetylase complex can be re-
cruited directly by DNA-binding proteins, including Mad, Ume6, Ski, Ikaros,
and p53. mSin3A complexes can also be recruited via interactions with core-
pressors for nuclear hormone receptors, most notably N-Cor and SMRT. mSin3A

Figure 4 Recruitment of HDAC activity. HDAC activity can be targeted to specific genes or
regions through interactions with diverse corepressors and DNA-binding regulators.
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complexes also associate with additional corepressors such as Rb and Groucho,
which are in turn recruited by specific DNA-binding activators.

The NuRD/NRD/Mi-2 complex is also likely to be recruited to promoters via
interactions with DNA-binding regulators (reviewed in 19, 296). NuRD interacts
with the Hunchback and Polycomb repressors inDrosophila, and the Ikaros tran-
scription factor in T cells.

Recruitment of deacetylase activity to particular regions of the genome has
been linked to interactions between deacetylases and proteins that bind methylated
DNA. Transcriptionally silenced regions are associated with both hypoacetylated
and hypermethylated DNA (41, 266, 409, 470). Methylation-mediated repression
requires the presence of nucleosomal structure (69, 273), suggesting a link between
chromatin, methylation state, and repression. The mSin3 complex can interact
with the methylated DNA-binding protein MeCP2, and repression mediated by
MeCP2 requires deacetylase activity (265, 405). NuRD contains or interacts
with two proteins, MBD3 and MBD2, that have methyl binding domains similar
to MeCP2. Interactions between MBD2 and NuRD can direct the deacetylase
complex to methylated DNA (659).

Noncovalent Chromatin Modification

Nucleosomes are subjected to conformational remodeling in addition to cova-
lent modifications (reviewed in 34, 73, 245, 291, 304, 451, 480, 587, 615, 620).
Remodeling involves the breaking and reforming of histone-DNA contacts that
result in the mobilization of nucleosomes in the chromatin template. Although the
precise mechanism of such chromatin remodeling is unknown, several different
remodeling complexes have been identified (Table 3), the best studied of which
are the Swi/Snf and Rsc complexes from yeast and the NURF, CHRAC, and ACF
complexes ofDrosophila. All of these complexes contain an ATPase subunit
that is essential for remodeling activity along with additional subunits that affect
regulation, efficiency, and specificity.

Chromatin remodeling factors apparently act by catalyzing fluidity in the po-
sition and conformation of nucleosomes (reviewed in 291). They are thought to
do this by catalyzing the interconversion between various chromatin states via an
activated intermediate consisting of the remodeling factor and a nucleosome with
weakened histone-DNA contacts. As this model posits that remodeling complexes
increase the rate of interconversion between chromatin states, an important im-
plication is that the action of remodeling complexes does not specify whether the
resulting chromatin state is positive or negative for transcription. Genome-wide
analysis of the effects of loss of the Swi2 remodeling factor in yeast indicates
that this remodeling factor has positive roles in transcription at some genes and
negative roles at other genes (236, 536).

Diversity of Functions of Chromatin Remodeling FactorsThe number and
diversity of chromatin remodeling factors appear to reflect differences in their
function. There are two main families of ATPase subunits, each with distinct
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TABLE 3 Chromatin remodeling factors

Activities of
Complex Organism complex Subunits Features Size

SWI/SNF Family

Swi/Snf S. cerevisiae Chromatin Swi1 148 kDa
remodeling Swi2/Snf2 ATPase, not essential 194 kDa
activity Swi3 Similar to RSC8 93 kDa

Snf5/Swi10 103 kDa
Snf6 37 kDa
Snf11 19 kDa
Snf12 Swp73, similar to RSC6 73 kDa
Swp82 ∼82 kDa
Swp59 Arp9, actin-related protein 53 kDa
Swp61 Arp7, actin-related protein 54 kDa
Swp29 Subunit of TFIIF and TFIID 27 kDa

RSC S. cerevisiae Chromatin Sth1 ATPase, essential 157 kDa
remodeling RSC1 107 kDa
activity RSC2 102 kDa

RSC3 90 kDa
RSC4 72 kDa
RSC5 ∼65 kDa
RSC6 Similar to SNF12 54 kDa
RSC7 ∼60 kDa
RSC8 Similar to SW13 63 kDa
RSC9 ∼55 kDa
RSC10 ∼55 kDa
RSC11 Arp7, actin-related protein 54 kDa
RSC12 Arp9, actin-related protein 53 kDa
RSC13 ∼27 kDa
RSC14 ∼23 kDa
RSC15 ∼23 kDa
Sfh1 Similar to SNF5 49 kDa

hSwi/Snf H. sapiens Chromatin BAF250 ∼250 kDa
remodeling Brg1 ATPase, essential ∼190 kDa
activity or hBrm ATPase, not essential

BAF170 ∼170 kDa
BAF155 Similar to Swi3 ∼155 kDa
BAF110 Similar to Swi3 ∼110 kDa
BAF60a Similar to Snf12 ∼60 kDa
or BAF60b Tissue-specific BAF60 ∼60 kDa
or BAF60c Tissue-specific BAF60 ∼60 kDa

BAF57 HMG domain, kinesin-like ∼57 kDa
region

BAF53 Actin-related protein ∼53 kDa
BAF47 INI1/hSnf5, ∼47 kDa

similar to Snf5

dSwi/Snf D. melanogaster Chromatin Brahma ATPase, essential ∼190 kDa
remodeling BAP155 Similar to Swi3 ∼155 kDa
activity BAP111 ∼111 kDa

BAP74 ∼74 kDa
BAP60 Similar to Snf 12 ∼60 kDa
BAP55 Actin-related protein ∼55 kDa
BAP47 ∼47 kDa
BAP45 SNR1, similar to Snf5 ∼45 kDa

ISWI Family

ISW1 S. cerevisiae Nucleosome Isw1 ATPase, not essential 130 kDa
remodeling p110 110 kDa
and spacing p105 105 kDa
activity p74 74 kDa

ISW2 S. cerevisiae Nucleosome p140 140 kDa
spacing activity Isw2 ATPase, not essential 130 kDa

NURF D. melanogaster Nucleosome NURF-215 215 kDa
spacing activity ISWI ATPase 140 kDa
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NURF-55 Homologous to RbAp48 55 kDa
NURF-38 Inorganic pyrophosphatase 38 kDa

ACF D. melanogaster Chromatin assembly, ISWI ATPase 140 kDa
spacing, remodeling Acf1 185 kDa
activity

CHRAC D. melanogaster Nucleosome p175 175 kDa
remodeling and p160 Topoisomerase II 160 kDa
spacing activity ISWI ATPase 130 kDa

p20 20 kDa
p18 ∼18 kDa

hACF H. sapiens Chromatin assembly, hSnf2h ATPase 135 kDa
remodeling activity BAZIA 190 kDa

RSF H. sapiens Enhances transcription p325 325 kDa
from chromatin hSnf2h ATPase 135 kDa
templates

TABLE 3

Activities of
Complex Organism complex Subunits Features Size

(Continued (

complexes identified in several different organisms (Table 3). Complexes with
ATPase subunits from different families appear to have different substrate require-
ments in vitro. NURF requires histone tails for its activity, whereas Swi/Snf does
not (181, 207, 351). Several ISWI complexes are stimulated only by nucleosomal
DNA, whereas Swi/Snf is stimulated by nucleosomal as well as naked DNA (121,
323, 570).

The substrate specificities between complexes with Swi/Snf or ISWI suggest
potential mechanistic differences among the remodeling factors, but additional
functional differences are apparent between complexes with similar or identi-
cal ATPase subunits. For example, yeast Rsc complex is essential for viability,
whereas Swi/Snf is not, presumably reflective of different roles in vivo (75). Indi-
vidual ISWI complexes display differences in their activities, most likely reflecting
differences in their mechanisms and their functions in vivo (568–570, 582). For
instance, multiple ISWI-containing complexes can generate ordered arrays of nu-
cleosomes from irregularly spaced arrays, but the extent of ordering and the spacing
between nucleosomes vary with the different complexes, presumably reflecting the
differences in their subunits and composition (255, 569, 581).

Like the multisubunit forms of histone acetyltransferases and histone deacety-
lases, the subunits associated with the ATPase subunits influence the functions of
the complex. The recombinant ISWI ATPase subunit can perform several func-
tions characteristic of ISWI-containing complexes, including promoting uniform
spacing of nucleosome arrays, remodeling of chromatin in conjunction with the
GAGA factor, and repositioning of nucleosomes (118, 321). ISWI in the context
of the CHRAC complex displays an altered pattern of nucleosome repositioning
(321). Similarly, ISWI in the context of the ACF complex is stimulated in its
ability to assemble appropriately spaced nucleosome arrays (256).
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Recruitment of Remodeling Factors Swi/Snf is the best characterized remod-
eling complex, and significant effort has been devoted to identifying how this
factor is recruited to promoters. Swi/Snf is likely targeted to specific promoters
by DNA-binding activator proteins (Figure 1) (120, 133, 406, 407, 647). In mam-
malian systems, several steroid receptors interact with components of Swi/Snf,
and the glucocorticoid receptor can target ATP-dependent remodeling activities
to a mononucleosome (167, 643, 644). While no sequence-specific DNA-binding
activity has been identified in Swi/Snf, the complex can bind DNA structures that
may contribute to directing Swi/Snf to nucleosomes (1, 415, 465, 602). Swi/Snf
may also be targeted to promoters via interactions with the general transcription
machinery (102, 408, 609).

RNA POLYMERASE II AND INITIATION COFACTORS

Transcriptional activators recruit the RNA polymerase II–containing transcrip-
tion initiation apparatus to promoters of protein-coding genes. The assembled
apparatus contains the 12-subunit RNA polymerase II core enzyme, the general
transcription factors, and one or more multisubunit complexes called coactivators
or mediators. RNA polymerase II holoenzymes that contain most of these compo-
nents of the initiation apparatus in a single complex have been purified from yeast
and mammalian cells, suggesting that much of this apparatus can be recruited to
promoters in one step.

The best-defined RNA polymerase II holoenzyme is from yeast and contains
RNA polymerase II, a subset of the general transcription factors and the Srb/Medi-
ator complex. The Srb/Mediator complex appears to integrate signals from tran-
scriptional regulators at promoters, and its composition can be remodeled as
cells encounter new environments to allow coordinate control of specific sets
of genes. Recent studies have revealed that various mammalian coactivators,
purified independently by multiple investigators for their ability to reconstitute ac-
tivated transcription of different genes, are homologues of the yeast Srb/Mediator
complex.

Core RNA Polymerase II

Purified eukaryotic core RNA polymerase II typically has 10 to 12 subunits
(Table 4). Core RNA polymerase II is capable of DNA-dependent RNA syn-
thesis in vitro, but is incapable of specific promoter recognition in the absence of
additional factors. Yeast and human RNA polymerase II consist of 12 subunits,
Rpb1 to Rpb12. The genes encoding the 12 yeast subunits are all required for
normal cell growth. Genes for each of the 12 human RNA polymerase II subunits
have been isolated and exhibit remarkable structural and functional conservation,
as most human subunit genes can functionally substitute for their counterparts in
yeast (reviewed in 618).
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Eukaryotic RNA polymerase II molecules share several important features with
their bacterial counterparts that provide clues to subunit functions. The bacterial
RNA polymerases are composed of a specificity factor (σ ), and a three-component
core enzyme, structured as aβ,β ′,α2 tetramer. The two largest subunits, Rpb1 and
Rpb2, are homologous to theβ ′ andβ bacterial core subunits, respectively. Rpb3
and Rpb11 share a weaker homology with theα bacterial core subunit and can form
a Rpb3-Rpb11 heterodimer in vitro (322). The eukaryotic subunit orthologues of
these bacterial core enzyme subunits are largely responsible for RNA catalysis
(reviewed in 618, 646).

The structure of yeast RNA polymerase II has been solved at 3 angstroms
resolution and has revealed several interesting features (122a). Comparison of
previously solved structures of prokaryotic RNA polymerase with the structure
of eukaryotic RNA polymerase II reveals that the structures of the core subunits of
these enzymes are very similar (122a, 655). The two largest subunits, Rpb1 and
Rpb2, form a cleft that contains the active site, identified in the structure by the
location of a catalytic magnesium ion. The position of the active site relative to the
projected pathway of DNA in the cleft suggests that DNA does not follow a straight
path through the enzyme, and two candidate grooves have been identified as exits
for nascent RNA. The floor of the Rpb1-Rpb2 cleft contains two pores formed by
extensions of Rpb1 and Rpb2 that cross the gap between the two subunits. The
pores are at the apex of a funnel-like space in the enzyme. Together, the pores
and funnel may function as channels for nucleotides or as channels for RNA and
factors that affect 3′-5′ cleavage of nascent RNA during proofreading or bypass of
blocks to transcription.

While RNA polymerase II is often considered a single functional unit, its sub-
units have diverse functions, and there are multiple forms of the core enzyme
in living cells. Subunit-specific functions that have been described include start
site selection (240, 540), transcriptional elongation rates (12, 222, 455), and in-
teractions with activators (390). The structure of the eukaryotic polymerase also
indicates potential functions for particular subunits (122a). Mobile jaws com-
prised of Rpb5 on one side and Rpb1 and Rpb9 on the other may help position
downstream DNA while regions of Rpb1 and Rpb2 together with Rpb6 appear to
form a sliding clamp that binds DNA, stabilizing the transcription complex. As
expected, Rpb3 and Rpb11 form a structure similar to theα2 dimer and are part
of a subcomplex along with Rpb10 and Rpb12.

The yeast Rpb4 and Rpb7 subunits form a dissociable subcomplex that has been
implicated in the stress response and in the initiation of transcription (103, 144,
619). While Rpb4 and Rpb7 are present only in substoichiometric amounts during
the exponential phase of yeast growth, they are found as stoichiometric subunits of
core RNA polymerase II under suboptimal conditions such as the stationary phase
of cell growth (103). Recent structural data suggest that Rpb4 and Rpb7 are in-
volved in the interaction between DNA and the active site cleft of RNA polymerase
(16, 260). Human Rpb4 and Rpb7 can substitute for their yeast counterparts to a
limited extent and display similar patterns of tissue-specific expression (276).
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Since yeast have at least two forms of RNA polymerase II core enzyme (one
with Rpb4/7 and one without), and the amounts of these forms depend on the
growth and environment of cells (103), it will be interesting to determine whether
higher eukaryotes also have multiple forms of core RNA polymerase II, and if
these are regulated by development, cell type specificity, or environment.

RNA Polymerase II CTD The largest subunit of RNA polymerase II contains a
unique carboxy-terminal repeat domain (CTD) that consists of tandem repeats of a
consensus heptapeptide sequence (Tyr-Ser-Pro-Thr-Ser-Pro-Ser) (115, 646). The
CTD consensus sequence is highly conserved in eukaryotes, although the number
of heptapeptide repeats varies from 26 or 27 inS. cerevisiaeto 52 in humans. The
CTD is essential for viability in yeast and metazoan cells (5, 30, 182, 411, 652).

The functions of the CTD are closely associated with the phosphorylation state
of the domain. The CTD exists in at least two phosphorylation states. RNA poly-
merase II molecules lacking phosphate on the CTD are found in initiation com-
plexes (96, 270, 325, 355, 574), while elongating polymerase molecules contain
heavily phosphorylated CTDs (28, 72, 414, 604; reviewed in 127). Since the phos-
phorylated CTD has a role in recruiting the mRNA capping enzyme to the nascent
transcript, and mRNA capping occurs soon after promoter clearance (98, 379,
380, 648), CTD phosphorylation most likely occurs during the transition from
transcription initiation to elongation. The switch in CTD phosphorylation states
that occurs between initiation and elongation appears to cause the RNA polymerase
II molecule to switch cofactors. The Srb/Mediator complex is tightly associated
with RNA polymerase II molecules that lack phosphate on their CTDs (289, 301).
In contrast, the elongator complex and various RNA processing factors become
associated with RNA polymerase II molecules with hyperphosphorylated CTDs
(380, 430, 612).

Two kinases have been identified that can phosphorylate the CTD and, based
partly on their tight association with the initiation apparatus, are almost certainly
involved in regulation of transcription initiation. The Cdk7 subunit of the general
transcription factor TFIIH is a CTD kinase (153, 356, 507) and phosphorylation
by Cdk7 is thought to be critical for the switch to a stable elongation complex (140,
641). Mutations in the kinase subunit of human TFIIH affect CTD phosphorylation
in vitro (562) and in vivo (366). Conditional loss-of-function mutations in the yeast
homologue of Cdk7, Kin28, cause a complete loss of transcription of protein-
coding genes (236). The Srb10/Cdk8 kinase, a component of the Srb/Mediator
complex, is also a CTD kinase (254, 345, 539). Genome-wide expression analysis
indicates that yeast Srb10 acts as a negative regulator of transcription under rich
growth conditions (236) and a model for its negative regulatory mechanism has
been proposed (225).

The proposed role for CTD phosphorylation in transcription elongation is rein-
forced by evidence that the HIV-1 transcriptional activator Tat enhances transcrip-
tion elongation by interacting with two CTD kinases, TFIIH and P-TEFb (positive
transcription elongation factor b), to stimulate CTD phosphorylation (reviewed in



P1: FUI

November 13, 2000 13:47 Annual Reviews AR116-04

EUKARYOTIC TRANSCRIPTION 105

171, 259, 272, 458, 483, 552, 638). P-TEFb, first identified as aDrosophilafactor
that could stimulate transcription elongation in vitro (373), contains the Cdk/cyclin
pair Cdk9 and cyclin T (449, 664). Human cyclin T family members interact with
the Tat activator, suggesting that Tat-mediated stimulation of transcription involves
recruitment of P-TEFb (605). Human TFIIH has also been reported to bind the ac-
tivation domain of Tat, although the reports differ on which subunits make contact
(125, 172, 437). Tat stimulates the CTD phosphorylation activity of TFIIH. Both
TFIIH and P-TEFb CTD kinases seem to be required for Tat-dependent activation
in vitro (125, 172, 370, 437, 664).

Fcp1 is a CTD phosphatase with a general role in regulating transcription of
protein-coding genes (297). Both yeast and human Fcp1 bind the largest subunit
of the general transcription factor TFIIF (11, 13) and both phosphatases are stim-
ulated by the addition of partially purified TFIIF (82, 83). This stimulation can be
blocked by addition of TFIIB (84), suggesting that Fcp1, TFIIF, and TFIIB may
all regulate polymerase recycling (84, 99). Genome-wide expression analysis with
yeast Fcp1 mutants demonstrates that loss of Fcp1 has widespread transcriptional
effects (297).

Basal/General Transcription Factors (Core Promoter Factors)

The set of basal or General Transcription Factors (GTFs) required for specific
promoter binding by RNA polymerase II in vitro includes TFIIA, TFIIB, TFIID,
TFIIE, TFIIF, and TFIIH (Table 4) (reviewed in 113, 211, 424, 473, 480). Despite
the name, it is not yet clear that each of the GTFs functions at all genes in vivo, and
it is likely that other components of the transcription apparatus are as generally
employed as the GTFs. Hence, these proteins and complexes are best described
as core promoter factors, as the general feature of GTFs is that they have roles at
core promoters.

A preinitiation complex containing the GTFs and RNA polymerase II can be
assembled in a stepwise fashion on promoters in vitro (reviewed in 62, 651). Order
of addition experiments indicated that promoter elements were bound by TFIID
or TBP, followed by TFIIA, TFIIB, a subcomplex of RNA polymerase II and
TFIIF, TFIIE, and finally TFIIH. It now seems unlikely that the individual factors
assemble in this fashion at promoters in vivo, for reasons discussed below, but
these studies provided a critical framework for understanding the individual roles
of the GTFs.

In considering the roles of GTFs, it is useful to keep in mind the multistep
models of transcription initiation derived from in vitro studies. The assembled
transcription apparatus proceeds through several steps on the way to forming pro-
ductively elongating complexes (reviewed in 111, 191, 573). The complex melts
promoter DNA to form the open complex in which 12–15 bp of promoter DNA
are in the form of a single-stranded bubble (open complex formation). Initiation
continues with the formation of the first few phosphodiester bonds. Typically,
polymerases repeatedly initiate transcription and release the resulting small RNAs
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(abortive initiation). Eventually, the polymerase transitions from abortive initia-
tion as it generates a longer RNA (promoter clearance). Polymerase tends to pause
25–30 bp from the start site at many promoters (reviewed in 347, 573). These early
elongation complexes need to make a critical transition to a fully competent elon-
gating form of the apparatus that is able to escape the promoter (promoter escape)
(reviewed in 111).

We briefly review recent developments with the general transcription factors
(GTFs) and refer the reader to other reviews for additional details (113, 211, 424,
473, 480).

Promoter Binding Factors: TBP, TAFs, TICs The structure of TBP, alone and
complexed with promoter DNA and GTFs, has been solved (67). TBP resembles
a symmetrical molecular saddle (89, 410). When bound to a promoter, this saddle
structure sits atop the DNA, contacting the minor groove of the TATA element and
inducing a sharp DNA bend accompanied by a partial unwinding of base pairs that
may be instrumental in the process of initiation (281, 288).

Additional polypeptides in the TFIID fraction copurify with TBP and were sub-
sequently named TBP-associated factors (TAFs). TAFs were originally described
as coactivators (reviewed in, 68, 584), but they are also involved in promoter selec-
tivity (reviewed in 68, 188, 195, 328, 584). TAF function in promoter selection is
most clearly illustrated when considering promoters with combinations of TATA
and Inr elements. TBP alone is sufficient to direct transcription in vitro from tem-
plates with TATA elements. In contrast, TAFs are required for transcription from
TATA-less promoters in vitro (65, 375, 378). Basal transcription from TATA-less,
Inr-containing promoters requires additional factors (TAF and initiator-dependent
cofactors or TICs) that are needed for TAF-dependent Inr functions but are dispens-
able at TATA-containing promoters (376). TAFs and a subset of TICs are required
for the synergistic function of TATA and Inr elements at promoters containing both
elements (66, 274, 375, 376, 583). Further evidence for core-promoter selective
effects is demonstrated by the observation that TAFs can both inhibit and enhance
TBP function, depending largely on the context of the core promoter elements
(146, 205, 403, 417, 583). Genetic evidence in yeast and metazoan systems also
indicate that TAFs perform promoter selective roles (9, 10, 216, 236, 509, 541,
599).

TFIIA TFIIA functions in part by binding to TBP and stabilizing the TBP-DNA
interaction (63, 247). TFIIA interacts with numerous activators (434, 642), and
TBP mutants that fail to interact with TFIIA are deficient in activation, suggest-
ing that TFIIA is critical for transcriptional activation of some genes (432, 527).
TFIIA may also function by antagonizing transcriptional repressors; it physically
displaces or blocks several negative transcriptional regulators from the TFIID com-
plex (17, 177, 252, 382, 385, 433). This mechanism could explain the variable
requirement for TFIIA in vitro. TFIIA was originally purified based on its re-
quirement for transcription in crude systems (472). In highly purified systems,
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presumably devoid of regulators normally antagonized by TFIIA, TFIIA is dis-
pensable (119, 131, 216, 434, 495, 538, 642).

TFIIB TFIIB is involved in the selection of transcription start sites, possibly
by setting distances between promoters and transcription start sites. Mutations in
TFIIB cause a shift in the transcription start site (40, 452) and a loss of interaction
between TFIIB and RNA polymerase II (26, 40, 64, 70). Structural studies suggest
that the distance between TFIIB and the RNA polymerase II catalytic site is ap-
proximately 32 bp, which is the average distance between the TATA box element
of promoters and transcription start sites (335).

TFIIB interacts with diverse activators that may serve to recruit TFIIB to pro-
moters (285, 346). The strength of certain activator-TFIIB interactions correlates
with the potency of the activator (346, 622), although analysis of various TFIIB
point mutants defective in activation in vitro has not perfectly mirrored the behavior
of these mutants in vivo (104). Studies with activation-defective TFIIB mutants
suggest that TFIIB-binding activators may function in some cases by inducing
conformational changes in TFIIB (2, 621).

TFIIF TFIIF has many of the characteristics of bacterial sigma factor: It binds
tightly to RNA polymerase II, suppresses nonspecific DNA binding, and stabi-
lizes the preinitiation complex (112, 196). Like sigma factor, TFIIF can bind
Escherichia colipolymerase, and this binding occurs through regions of the Rap30
subunit that are most similar to sigma factor (381).

TFIIF may also function by affecting DNA topology. Crosslinking experiments
with purified transcription factors suggest that DNA is wrapped one complete turn
around the preinitiation complex (477). TFIIF is critical for tight wrapping of
DNA, possibly inducing torsional strain in the DNA, thereby facilitating promoter
melting. Mutants in TFIIF that display transcription defects are also defective in
DNA wrapping (122, 477).

TFIIF can also stimulate polymerase elongation rates by suppressing transient
pauses during transcription (35, 161, 257, 460). It is unknown whether this function
is related to its DNA wrapping ability, association with known elongation cofactors
(280), or a recently discovered intrinsic kinase activity (484).

TFIIE TFIIE function is closely linked to TFIIH: Interspecies complementation
of TFIIE function in vitro is possible only if both TFIIE and TFIIH are from the
same organism (343). In stepwise assembly models, TFIIE follows RNA poly-
merase II, precedes TFIIH, and possibly functions in TFIIH recruitment (63, 160).
TFIIE also stimulates the CTD kinase and ATPase activities of TFIIH (356,
421–423).

TFIIE is likely to play a role in melting of promoter DNA. Both human and
yeast TFIIE contain a zinc ribbon motif that is implicated in DNA binding (463)
and TFIIE can bind regions of single stranded DNA (311), suggestive of a role
in opening or maintaining an open promoter complex. Significantly, the in vitro
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requirement for TFIIE can be bypassed by premelted promoter sequences (237,
436). This requirement for TFIIE is influenced by helical stability of the DNA
substrate (237). As stability is a function of sequence, one prediction is that the
requirement for TFIIE should be sequence and therefore promoter specific. Indeed,
genes show variable requirements for TFIIE both in vivo and in vitro (236, 237,
444, 491, 560).

TFIIH TFIIH can be separated into two subcomplexes, core TFIIH and a sep-
arable kinase/cyclin subcomplex (154, 542, 544, 600, 603). Core TFIIH is also
found as a subcomplex of the nucleotide excision repair complex (134, 241, 497,
498, 603), which accounts for previous observations of coordinated transcription
and DNA repair (46, 384). The subunits of TFIIH have at least three enzymatic
activities: DNA-dependent ATPase, ATP-dependent helicase, and CTD kinase
(reviewed in 107).

TFIIH performs critical roles in multiple, early steps of transcription. Two sub-
units have helicase activity (XPB/ERCC3 and XPD/ERCC2 in human, Rad25/Ssl2
and Rad3 in yeast). The helicase activity found in XPB is essential for promoter
opening in vitro (208, 290). Requirements for this function can be bypassed by
use of supercoiled (442, 443, 572) or premelted templates (237, 436, 550), further
supporting a role for TFIIH in promoter opening. This helicase activity is also
required for the transition from abortive to productive elongation. XPB prevents
premature arrest of early elongation complexes at promoter-proximal positions
(51, 140, 141, 235, 238, 312, 429).

The TFIIH kinase/cyclin pairs are Cdk7/cyclin H in humans and Kin28/Ccl1 in
yeast (487, 508, 512). These Cdks phosphorylate serines in the RNA polymerase
II CTD. TFIIH can phosphorylate additional substrates, although it is unclear
whether all of these are physiologically relevant targets (422, 478). In mammalian
systems, the TFIIH kinase also functions as a Cdk activating kinase (CAK) and
regulates cell cycle transitions (155, 156, 367, 454, 487, 508, 512, 523). In yeast,
the corresponding CAK activity is performed by a distinct kinase (Cak1/Civ1) and
not by the yeast TFIIH kinase (Kin28) (150, 268, 559). Cak1 can phosphorylate
Kin28, and phosphorylation of TFIIH may serve to link transcription and the cell
cycle (290).

Mutations in the XPB and XPD helicases are responsible for several genetic
diseases in humans including xeroderma pigmentosum, Cockayne’s syndrome,
and trichothiodystrophy (reviewed in 107). While XPB appears to be the primary
helicase involved in transcription, XPD is required for nucleotide excision repair
(610). The complex phenotypes of these TFIIH-related diseases will likely relate
to both transcriptional and repair defects (107).

Yeast Polymerase II Holoenzyme

The yeast RNA polymerase II holoenzyme is a complex of RNA polymerase
II, a subset of the general transcription factors, and the Srb/Mediator complex
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(289, 301). The holoenzyme was discovered when attempts to purify Srb proteins
using conventional column chromatography led to the identification of a large com-
plex that also contained RNA polymerase II and GTFs (301, 556). The purified
RNA polymerase II holoenzyme has the capacity to initiate transcription and re-
spond to activators when supplemented with additional purified general transcrip-
tion factors (301). In contrast, transcription reactions containing highly purified
yeast core RNA polymerase II and GTFs are unresponsive to activators (157, 494,
495). The ability of Srb-containing holoenzymes to respond to activators in vitro
reflects the apparent functions ofSRB(Suppressor of RNA polymerase B) gene
products in vivo.SRBs had been identified in a genetic selection for factors involved
in RNA polymerase II CTD function (412); the CTD mutations used in the selection
caused defects in transcription activation in vivo (496) and in extracts in vitro (344).

A second line of investigation proved critical in the discovery of the yeast
holoenzyme and elucidation of its functions (289). The holoenzyme can be sep-
arated into core RNA polymerase II, general transcription factors, and a CTD-
associated subcomplex by incubating holoenzyme preparations with anti-CTD
antibodies. The subcomplex dissociated from the CTD sufficed to reconstitute the
response to an activator when added to purified core RNA polymerase II and GTFs;
thus, the complex was named the mediator of activation. The mediator contains
the Srb proteins and other holoenzyme-associated regulatory proteins (226, 289).

There are approximately 2000 to 4000 molecules of RNA polymerase II holoen-
zyme in haploid yeast cells (302). This contrasts with 10,000 to 20,000 molecules
of RNA polymerase II, similar levels of GTFs, and approximately 2,000,000
ribosomes per cell (328). The Srb proteins may be limiting for holoenzyme for-
mation, since all Srb protein in yeast cells is associated with RNA polymerase II
when cells are harvested (302).

The Srb-containing RNA polymerase II holoenzyme is essential for transcrip-
tion of most protein-coding genes in yeast cells. Analysis of temperature-sensitive
mutants of two of the Srb components, Srb4 and Srb6, demonstrated that they were
globally required for transcription in yeast cells (557), and subsequent genome-
wide expression analysis confirmed these results (236). Since the yeast Srb pro-
teins are found tightly and exclusively associated with RNA polymerase II when
cells are harvested, an Srb-containing RNA polymerase II holoenzyme is probably
required at most promoters in vivo.

Heterogeneity in Holoenzyme CompositionThe Srb-containing RNA poly-
merase II holoenzymes purified thus far are remarkably similar, despite differ-
ences in yeast strains, cell growth conditions, and purification protocols (226, 289,
300, 301). The differences noted in subunit composition involve the set of GTFs
and the number of regulatory complexes that copurify. Some yeast holoenzyme
preparations contain all of the GTFs except TBP and TFIIE (301); some contain
all of the GTFs except TBP, TFIIB, and TFIIE (300); and others have been iso-
lated with only a single GTF (TFIIF) (289). Some yeast holoenzyme preparations
contain stoichiometric levels of Swi/Snf (609), whereas others lack any detectable
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Swi/Snf protein (74, 289). It seems likely that RNA polymerase II holoenzymes
in living cells exist in more than one form and this may be partially responsible
for the differences in purified holoenzymes. Also, large multisubunit complexes
do not easily survive exposure to the charged resins used in conventional col-
umn chromatography. The ribosome, for example, dissociates into subcomplexes
when subjected to ion exchange chromatography (132). For this reason, the ex-
act composition of RNA polymerase II holoenzymes in vivo is not known. The
holoenzyme discussed here is composed of core RNA polymerase II, all the GTFs
other than TBP (and its associated proteins), the core Srb/Mediator complex, and
the Srb10 cyclin-dependent kinase complex.

The composition of the Srb/Mediator complex can be remodeled as cells en-
counter new environments to allow coordinate control of specific sets of genes
(236). The Srb10 Cdk is a component of the Srb/Mediator complex of RNA
polymerase II holoenzymes in cells growing exponentially on rich glucose media,
but becomes depleted from cells as they enter the diauxic shift, where glucose
becomes limiting. Since Srb10 is a repressor of glucose-repressed genes (among
others), this depletion provides a mechanism to coordinately induce the popula-
tion of glucose-repressed genes. It will be important to determine whether cells
remodel the Srb/Mediator complex in additional ways. Many components of the
Srb/Mediator complex have critical roles at only a subset of genes, and coordinate
regulation of such genes could occur through regulation of the composition or
modification of Srb/Mediator complexes (236).

Yeast Srb/Mediator Complex and Subcomplexes
Srb/Mediator Function Many components of the Srb/Mediator complex play
essential roles in transcriptional regulation in living cells, apparently by provid-
ing targets for transcriptional activators and conveying regulatory signals to RNA
polymerase II and other components of the initiation apparatus. Genetic studies
suggest that Srb function is associated with the CTD, and CTD-proximal regions
of the large subunit of RNA polymerase II (412) and purified Srb/Mediator com-
plex binds tightly and specifically to recombinant CTD (400). The Srb/Mediator
complex can stimulate CTD phosphorylation by TFIIH in vitro (289), possibly
providing the switch between initiation and elongation forms of the polymerase.
Analysis of DNA-bound and free forms of RNA polymerase II in crude cell ex-
tracts suggests that the Srb/Mediator complex is not associated with elongating
RNA polymerase II, but rather is limited to the initiating form of RNA polymerase
II (543).

Srb/Mediator Composition The Srb/Mediator complex (Figure 5) can be puri-
fied by treating holoenzyme preparations with anti-CTD antibodies (226, 289), by
affinity purification with recombinant CTD columns (464), and by conventional
column chromatography (400). The most highly purified complex, considered the
“core” mediator complex, is composed of around 20 polypeptides: Srb2, Srb4,
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Figure 5 Subunit composition of Srb/Mediator-like complexes. The subunits of yeast, hu-
man, and mouse SRB/mediator-like complexes are compared. Identical or orthologous subunits
are marked by bold boxes and connected by lines. For metazoan subunits that have not been
named, numbers indicate subunit size in kDa. Soh1 has not yet been confirmed as a compo-
nent of the yeast Srb/Mediator. Additional information can be found at http://web.wi.mit.edu/
young/pub/srbmediator.html
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Srb5, Srb6, Srb7, Med1, Med2, Med4, Med6, Med7, Med8, Med11, Cse2, Gal11,
Pgd1, Rgr1, Rox3, Sin4, and Nut2 (400). Srb/Mediator complexes derived from
RNA polymerase II holoenzymes obtained from exponentially growing cells also
contain an Srb10 Cdk complex (Srb8, Srb9, Srb10, Srb11) (226, 345).

On the basis of their genetic and biochemical properties, the components of
the Srb/Mediator complex can be classified into multiple categories, as described
below.

Srb2, Srb4, Srb5, Srb6, Med6, and Rox3 SubcomplexThere is considerable
evidence for a Srb2, Srb4, Srb5, Srb6, Med6, Rox3 subcomplex that has roles in
holoenzyme stabilization and transcription activation. TheSRB2, SRB4, SRB5,
andSRB6genes were originally identified as dominant suppressors of RNA poly-
merase II CTD truncation mutants (299, 412, 556). Although CTD truncation
does not seem to alter core RNA polymerase II stability (411), it reduces the
ability of the holoenzyme to respond to activators (4, 344, 496). TheSRBgain-
of-function mutations compensate for CTD truncation by affecting the ability
of activators to interact with the holoenzyme, as withSRB4-1(298), or by sta-
bilizing the holoenzyme, as withSRB2-1(152). The holoenzyme-stabilizing
role of Srb2 is also consistent with in vitro assays showing that Srb2 and Srb5
are required for transcription and assembly of a stable PIC in nuclear extracts
(299, 556). Mutations in genes encoding Srb2 and Srb5 produce nearly identical
phenotypes, suggesting that Srb2 and Srb5 have similar roles in holoenzyme sta-
bilization (299, 556).

Biochemical and genetic assays demonstrate that Srb4 is a direct target of the
Gal4 activator (298). This role for Srb4 in activation may be shared by Srb6 as well.
Both proteins are encoded by essential genes that affect transcription of virtually
all protein-coding genes in vivo (236, 556, 557). A temperature-sensitivesrb4
mutant that produces a rapid and general shutdown of mRNA synthesis (236, 557)
can be suppressed by a dominant (gain-of-function) mutation inSRB6or MED6
(327). Conversely, amed6-tsmutation can be suppressed by a dominant allele
of SRB4(329). In this case, suppression of themed6-tsgrowth defect correlates
with a partial rescue of the transcriptional defects in vivo (329). These genetic
suppression interactions are allele-specific, suggesting that direct physical contacts
link Srb4 to Srb6 and Med6.

Med6 contributes to the activation function of the Srb/Mediator subcomplex,
as it is required for the full induction of a subset of genes in vivo and in vitro
(330). Genome-wide expression analysis reveals that approximately 10% of yeast
genes depend on Med6 function (236). In vitro transcription experiments with
RNA polymerase II holoenzymes impaired for Med6 function showed that Med6
is required for activated transcription by the VP16 acidic activator (330).

Consistent with the genetic evidence implicating these proteins in similar func-
tional pathways, recombinant Srb2, Srb4, Srb5, Srb6, and Med6 can form a sta-
ble complex in which Srb2 associates with Srb5, and Srb4 associates with Srb6
and Med6 (298, 327). A bridging interaction between Srb2 and Srb4 brings the
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complete set of proteins together in a single complex. A purified yeast Srb/Mediator
subcomplex can be disrupted into two small stable subcomplexes after denaturing
urea treatment (329). One subcomplex contains Srb2, Srb4, Srb5, Srb6, Med6,
and Rox3. The other is reported to contain Srb7, Med1, Med4, Med7, Med8,
Med9, Gal11, Pgd1, Rgr1, and Sin4.

Gal11, Pgd1 (Hrs1/Med3), Rgr1, Sin4, and Med2Gal11, Pgd1, Rgr1, Sin4,
and Med2 may form a subcomplex or functional module within the Srb/Mediator
complex, and several of these proteins have been implicated in transcription ac-
tivation. A direct physical interaction between Gal11, Pgd1, Rgr1, Sin4, and
Med2 has been inferred from the biochemical analysis of RNA polymerase II
holoenzymes purified from yeast strains deleted forMED2, PGD1, andSIN4or
partially deleted forRGR1(341, 399). The pattern of subunits missing from
the holoenzyme preparations predicts a Med2/Pgd1 subcomplex, Gal11 bound to
Sin4, and Sin4 in turn anchored to RNA polymerase II holoenzyme by Rgr1. To
explore the functions of these proteins, the mutant holoenzymes were assayed for
basal transcription, activated transcription by VP16 and Gcn4, and TFIIH CTD
phosphorylation. Stimulation of basal transcription and TFIIH-dependent CTD
phosphorylation was relatively unaffected by loss of Med2, Pgd1, Sin4, or Rgr1,
whereas activated transcription by VP16 required the Med2/Pgd1 subcomplex, and
Gcn4-dependent activation required Sin4 (399). Similarities among mutant phe-
notypes and genetic suppression analysis also suggest a functional link between
Gal11, Pgd1, Rgr1, and Sin4 (79, 341, 453).

Srb8, Srb9, Srb10, and Srb11 SubcomplexA subcomplex of Srb8, Srb9, Srb10,
and Srb11 is involved in repression of specific sets of genes, and is itself regulated
in response to the environment of the cell. Srb8, Srb9, Srb10, and Srb11 copurify
with RNA polymerase II holoenzymes and Srb/Mediator complexes isolated from
cells growing exponentially in rich glucose medium (226, 345; D Chao, V Myer &
R Young, unpublished). Srb10 is a cyclin-dependent kinase and Srb11 is its cyclin
partner (345). Several lines of genetic and biochemical evidence indicate that Srb8,
Srb9, Srb10, and Srb11 are all functionally and physically associated. RNA poly-
merase II holoenzyme purified from asrb101 strain lacks Srb8, and holoenzyme
from asrb81 strain lacks Srb10 and Srb11 (398). Loss-of-function mutations in
theSRB8, SRB9, SRB10, andSRB11genes all suppress CTD truncation mutations
and produce cells that are phenotypically indistinguishable (226, 345). The four
Srb proteins coelute identically from columns during holoenzyme purification.
Recombinant Srb10 and Srb11 can form a functional complex capable of CTD
phosphorylation in vitro (225).

Analysis of Srb8, Srb9, Srb10, and Srb11 function in vivo and in vitro indi-
cates that they are involved in regulating a small but important set of genes, and
that their function is predominantly a negative one. Loss-of-function mutations
in theSRB8, SRB9, SRB10, andSRB11genes partially restore the defects due to
CTD truncation mutations (226, 345). Many genetic screens and selections have
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found thatSRB8, SRB9, SRB10, andSRB11are required for complete repression
of transcription of a variety of genes, consistent with the role of their protein prod-
ucts in inhibition of transcription (23, 114, 226, 310, 345, 524, 545, 595; reviewed
in 79).

Genome-wide expression analysis with mutant cells revealed that the Srb10
kinase is a negative regulator of a substantial fraction of genes that are repressed
when cells grow vegetatively in rich media and are induced as cells experience nu-
trient deprivation (236). The genes regulated by Srb10 include glucose-repressed
genes and genes that are critical for the morphological change that permits for-
aging for nutrients and stress responses. Srb10 is physically depleted from cells
as they enter the diauxic shift, providing a mechanism for derepression of these
sets of genes. Srb10 in wild-type cells is thus responsible for repressing these
genes when cells are in exponential growth on glucose, but no longer performs
this function as cells enter the diauxic shift.

Srb10 and Srb11 mRNA and protein levels do not vary substantially with the
cell cycle (114; J Zhang & R Young, unpublished). Srb11 protein levels decrease
at the onset of meiosis and after heat shock (114). This suggests that cells remodel
holoenzyme composition or function with respect to the Srb10 kinase complex
during stationary phase, meiosis, and heat shock.

Experiments with wild-type and mutant holoenzymes indicate that Srb10 is
uniquely capable of phosphorylating the CTD of holoenzyme molecules prior to
stable preinitiation complex formation, thereby inactivating the holoenzyme for
transcription initiation (225). Negative regulation of some promoters may therefore
occur by stimulating an otherwise repressed Srb10 kinase prior to stable initiation
complex formation.

There is also evidence consistent with a positive role for Srb10 at one set of
genes and under certain growth conditions. Cells that lack Srb10 function are not
fully capable of inducting Gal gene expression (345). Srb10 can phosphorylate
the Gal4 transcriptional activator, and this may potentiate the ability of Gal4 to
activate transcription (232).

Other Subunits of the Srb/Mediator Complex Srb7The gene for Srb7 was
isolated as a recessive suppressor of CTD truncation, and is essential for cell
viability (226). Srb7 is tightly associated with the core Srb/Mediator complex,
unlike proteins encoded by the otherSRBgenes that were isolated as recessive
suppressors (SRB8, SRB9, SRB10, andSRB11) (400). Genome-wide expression
analysis of Srb7 mutants indicates that expression of at least half the genome is
dependent on Srb7 function (S Hassan, H Causton & R Young, unpublished).

Cse2, Nut1, and Nut2 Cse2, Nut1, and Nut2 are small holoenzyme subunits
whose genes were previously identified in unrelated genetic screens (206).CSE2
was originally isolated as a consequence of its effects on chromosome segregation
(626). NUT1andNUT2were isolated in a selection for factors that, when mutated,
relieved the requirement for Swi4-mediated regulation at URS2 of theHO gene
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(545). This same screen also identified genes encoding many other Srb/Mediator
subunits (SIN4, ROX3, SRB8, SRB9, SRB10, and SRB11).

Med proteins (Med1, Med4, Med7, Med8, and Med11)The Med proteins were
identified during biochemical fractionation as components of the Srb/Mediator
complex that, at the time, could not be related to a previously identified gene
(206, 400). Med3, Med9, and Med10 have since been identified as the products
of PGD1 (HRS1), CSE2, andNUT2, respectively. Med1 mutations have both
positive and negative effects on transcription, and produce phenotypes similar
to those of Srb10 mutations. The protein product probably interacts with Med2
(22). Med4 and Med5 are a single protein migrating as a doublet (400) and the
corresponding gene has been namedMED4. Med8 was recently reported to bind
directly to regulatory elements of some genes, suggesting a mechanism to link
activation and repression complexes to the transcriptional machinery (91).

Additional candidates Soh1 has been implicated in genetic studies as a factor
that interacts with components of the general transcription machinery (151). The
mammalian homologue of Soh1 has been identified in mammalian Srb/Mediator-
like coactivator complexes (202). The yeast protein Xtc1 can be detected in par-
tially purified RNA polymerase II holoenzyme preparations, and may interact with
multiple activators (147).

Cdc73/Paf1 RNA Polymerase II Complex

An RNA polymerase II complex that contains Cdc73, Paf1, Ccr4, Hpr1, Gal11,
Sin4, and Rgr1, but lacks many components of the Srb/Mediator complex, has been
described (86, 87, 511, 594). Although this complex has yet to be fully purified and
characterized, partial purification of tagged forms of Cdc73 and Paf1 indicates that
these proteins associate with a form of RNA polymerase II that lacks components
of the Srb/Mediator complex such as Srb2, Srb4, Srb5, and Srb6 (511). The Cdc73-
and Paf1-containing complex has been proposed to be a form of RNA polymerase II
holoenzyme, distinct from that containing the Srb/Mediator complex, that coexists
with the major form of holoenzyme (86, 87). In this model, the major form of
holoenzyme (containing the Srb/Mediator complex) initiates transcription of most
genes, while the Cdc73/Paf1-containing holoenzyme is involved in transcription
of a smaller, overlapping set of genes, which include genes regulated by protein
kinase C (86).

The Srb/Mediator-containing RNA polymerase II holoenzyme and its Srb/
Mediator complex has been purified and characterized in various in vitro assays,
and it will be important to subject the putative Cdc73/Paf1-containing holoen-
zyme to a similar evaluation to better understand its functions. Furthermore,
transcription of at least 95% of yeast genes is dependent on the Srb4-containing
RNA polymerase II holoenzyme, including many genes regulated by protein ki-
nase C (236), so it will be interesting to ascertain the relative roles of the two
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RNA polymerase II complexes in transcription of genes that are dependent on the
Cdc73/Paf1-containing holoenzyme.

Metazoan Holoenzymes and Coactivators

Metazoan RNA polymerase II holoenzymes exhibit many of the features of the
yeast RNA polymerase II holoenzyme, but are less stable to conventional column
chromatography than their yeast cousins and appear to be more diverse. Although
much of the work in this area is very recent, and a broad range of interesting
issues remains, several conclusions have emerged from studies of metazoan RNA
polymerase II holoenzymes and their Srb/Med-containing coactivator complexes.
First, although it has not been possible to purify to homogeneity intact RNA poly-
merase II holoenzymes using conventional ion exchange column chromatography,
affinity methods have permitted isolation and characterization of these large com-
plexes (101, 254, 427, 428, 435, 539), and Srb-containing holoenzymes have
been partially purified using conventional methods (88, 369, 408). Second, a set
of coactivator complexes purified from a variety of systems are almost certainly
homologues of the yeast Srb/Mediator complex (48, 202, 254, 262, 369a, 401, 466,
489). Third, several important features of the holoenzymes and their Srb/Med-
containing coactivators are conserved from yeast to humans, including their role
in responding to gene-specific transcriptional activators and repressors.

As mentioned previously, the model emerging from recent studies is that a
transcription initiation apparatus that approximates the size and complexity of the
ribosome is assembled at promoters under the control of, and with the capacity
to respond to, combinations of gene-specific regulators bound to enhancers. The
modularity of the transcription initiation apparatus enables the cell to recruit com-
ponents of this initiation apparatus in multiple steps or, if the apparatus is already
fully assembled, in a single concerted step.

Isolation and Characterization of Metazoan HoloenzymesRNA polymerase
II holoenzyme complexes from mammalian cells have been partially purified by
following the presence of human Srb7 (88, 369), the CTD kinase Cdk7 (185, 427,
428), or the general transcription factor TFIIF (100, 369). Mammalian holoen-
zymes have also been identified and characterized based on their interactions
with transcriptional activators (48, 125, 438) and elongation factors (435). The
mammalian RNA polymerase II holoenzymes best characterized for subunit com-
position have stoichiometric levels of RNA polymerase II and all the GTFs except
for TFIID (435).

The Srb proteins have been considered a hallmark of the yeast RNA polymerase
II holoenzyme since they are found almost entirely associated with the holoenzyme
when yeast cells are harvested (302). Most of the metazoan holoenzyme prepara-
tions described thus far contain homologues of the yeast Srb/Med proteins. Among
the various Srb/Med proteins, the sequence and function of Srb7 is highly con-
served between yeast and humans (88). All of the RNA polymerase II holoenzyme
preparations examined for the presence of mammalian Srb7 contain this Srb
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protein (88, 369, 408, 427; J Greenblatt, personal communication). In addition,
when crude extracts from mammalian cells were subjected to density gradient cen-
trifugation, all of the detectable Srb7 was associated with high-molecular-weight
forms of RNA polymerase II (427). The gene encoding Srb7 is expressed in most
mouse tissues and is essential for viability (571), suggesting that Srb7-containing
polymerase complexes exist in most tissues and play essential roles in expression
of protein-coding genes.

Homologues of several additional yeast Srb and Med proteins are found in mam-
malian holoenzyme complexes. Cdk8 and cyclin C share sequence and functional
homology with Srb10 and Srb11, respectively, and are generally components of
mammalian holoenzyme preparations (reviewed in 445). Orthologues of yeast
Srb7, Srb10, Srb11, Med6, Med7, Nut2, Rgr1, and Soh1 have been identified in
mammalian coactivator complexes (202, 262, 369a). Mammals andCaenorhab-
ditis eleganshave genes that appear to encode homologues of Rgr1 (262), and
Nut2 (206, 545).

Additional study of preparations of mammalian RNA polymerase II complexes
revealed the presence of various proteins previously identified as transcription or
DNA repair factors, including the chromatin-modifying factors BRG1, Swi/Snf,
and PCAF (102, 408), the coactivator CBP (408), the tumor suppressor gene
product BRCA1 (6, 504), DNA repair proteins (369), and the MCM family of
DNA replication factors (640). Further study is needed to ascertain how these
physical interactions reflect the functional interactions among these complexes in
living cells.

Metazoan Srb/Mediator-Like CoactivatorsThe metazoan Srb/Mediator-like
complexes that have been described include TRAP/SMCC (202, 254), ARC (401),
DRIP (466), NAT (539), murine mediator (262), CRSP (489), and a human Sur2-
containing complex (48).

The best-characterized metazoan Srb/Mediator-like complex is the Srb and
Med Cofactor Complex (SMCC), which was isolated from human cell lines with
epitope-tagged Srb7, Srb10, or Srb11 on the basis of its ability to mediate activation
by Gal4 derivatives (202). SMCC contains approximately 25 proteins, including
orthologues of yeast Srb7, Srb10, Srb11, Med6, Med7, Nut2, Rgr1, and Soh1.
As with the yeast Srb/Mediator complex, highly purified SMCC does not contain
RNA polymerase II. SMCC is essentially identical to another coactivator complex,
TRAP (Thyroid Receptor Associated Proteins), that was purified independently
for its ability to mediate activation with thyroid hormone receptor (163, 164, 254),
so this complex is now called TRAP/SMCC. TRAP/SMCC can bind simultane-
ously to activators and ligand-bound thyroid hormone receptor, indicating that the
complex is capable of integrating multiple signaling inputs (254).

ARC (Activator-Recruited Cofactor) was identified as a cofactor required for
synergistic activation by the Sp1 and SREBP-1a activators (401). DRIP (Vitamin-
D-Receptor Interacting Protein) was originally identified as a complex of proteins
that interact specifically with ligand-bound vitamin D receptor (467). Purification
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of both complexes and identification of individual subunits led to the realization
that the two complexes were essentially identical. ARC/DRIP can bind a number
of diverse activators and ligand-bound nuclear hormone receptors (401, 466).
A substantial number of the ARC/DRIP subunits are also found in the CRSP
coactivator, which was purified by its requirement for the stimulatory activity of
the enhancer-binding protein Sp1 (489).

NAT (Negative Regulator of Activated Transcription) was isolated by affinity
purification of the human homologue of yeast Srb10 (539). NAT is capable of
repressing activated transcription under certain conditions in vitro, as is SMCC
(369a), consistent with the presence of homologues of yeast Srb10 and Srb11,
which can function as a repressor in vivo and in vitro (225, 236).

The functions of the metazoan Srb/Mediator-like complexes and the identity
of specific subunits of TRAP/SMCC, ARC/DRIP, CRSP, and NAT (Figure 5)
indicate that these complexes are highly related. It is possible that each of these
complexes is derived from a single metazoan Srb/Mediator complex in vivo, and
that differences in biochemical fractionation and assays produce diverse fractured
elements of the complex. It is also likely that metazoan Srb/Mediator complexes
exist in multiple forms in cells, and can vary in subunit composition to reflect the
requirements of specific cells and environments.

Additional Metazoan Cofactors There are additional positive and negative co-
factors involved in transcription initiation by RNA polymerase II. The positive
cofactors include PC1, PC2, PC3/Dr2, PC4, p52 and p75, PC5, PC6, and PC7.
The negative cofactors include NC1 and NC2 (DR1-DRAP1) (reviewed in 267,
481).

RNA POLYMERASE II AND ELONGATION COFACTORS

A Switch from Initiation to Elongation

To produce an RNA transcript, the formation of a stable transcription initiation
complex must be followed by promoter clearance and processive elongation. Sev-
eral lines of evidence indicate that the switch from initiation to elongation involves
phosphorylation of the RNA polymerase II CTD and an exchange of cofactors as-
sociated with the polymerase. RNA polymerase II molecules found in initiation
complexes lack phosphate on their CTDs, while elongating polymerase molecules
contain heavily phosphorylated CTDs (reviewed in 127). The Srb/Mediator com-
plex is tightly associated with RNA polymerase II molecules that lack phosphate
on their CTDs in the holoenzyme (289, 301). In contrast, the elongator complex
and various RNA processing factors become associated with RNA polymerase II
molecules with hyperphosphorylated CTDs (380, 430, 612). CTD phosphoryla-
tion must occur during the transition from transcription initiation to elongation,
because the phosphorylated CTD has a role in recruiting the mRNA capping en-
zyme to the nascent transcript, and mRNA capping occurs soon after promoter
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clearance (98, 379, 380, 648). The precise mechanisms that control the switch
from initiation to elongation are unknown.

Several factors have been identified that regulate promoter clearance, promoter
escape, and processivity of elongation (summarized in Table 5).

Factors Influencing Promoter Clearance and Escape

Studies of transcription with purified RNA polymerase II suggest that promoter
clearance and escape constitutes an important regulatory step. Promoter clearance
and escape appears to involve a balance between negative and positive regulation
by various factors (reviewed in 347, 360, 448, 475, 513, 515, 573).

Negative Elongation Factors Transcription release factor 2 was originally iden-
tified as a factor that suppresses the appearance of long transcripts (459) and effects
ATP-dependent release of nascent transcripts (350, 628). Two factors, DSIF and
NELF, can confer sensitivity to the transcription inhibitor DRB, which inhibits
mRNA synthesis and CTD phosphorylation (137). DSIF was isolated by its ability
to induce pausing of the transcription complex in conjunction with the transcription
inhibitors DRB and H8 (591). The two subunits of DSIF are homologous to the
Spt4 and Spt5 gene products ofS. cerevisiaeand genetic studies link the function
of these genes to elongation (217, 591, 632). NELF also confers DRB sensitivity
(630) and functions cooperatively with DSIF in repressing transcription.

Positive Elongation Factors P-TEFb, TFIIF, and TFIIH contribute to forma-
tion of elongation-competent complexes. The activity of P-TEFb counters the
negative activities of NELF and DSIF (reviewed in 631). P-TEFb was originally
purified as a factor that stimulates transcriptional elongation and phosphorylates
the CTD inDrosophila (374, reviewed in 458). Subunit identification revealed
thatDrosophilaP-TEFb consists of a kinase/cyclin pair (Cdk9/cyclin T) (168, 449,
450, 605). A human homologue of Cdk9 (PITALRE) was identified by sequence
homology (664). Cdk9 was simultaneously found to be a cofactor for stimulation
of transcription by HIV Tat protein, thus identifying human P-TEFb as a Tat-
associated kinase (TAK) (186, 370, 636, 664). The Tat coactivator of HIV-1 may
also stimulate transcription by its ability to recruit the elongation factor Tat-SF1
(663), which may function as a general elongation factor (339).

TFIIF and TFIIH, which clearly have roles in transcription initiation, also affect
the elongation stage of transcription (35, 81, 162, 460). TFIIF lowers the frequency
of abortive initiation events and helps prevent premature stalling of early elonga-
tion complexes (633). TFIIF may leave polymerase just after initiation, but may
then be re-recruited by paused polymerase (650). The mechanism of elongation
stimulation by TFIIF is unclear, but may be related to TFIIF’s ability to promote
the wrapping of DNA around RNA polymerase II (477), its association with elon-
gation factors (280), or a recently described kinase activity (484). TFIIH kinase
activity may play a role in elongation through CTD phosphorylation, but it appears
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TABLE 5 Eukaryotic elongation factorsa

Complex Function Subunit Size

DSIF Negative factor, renders elongation hSpt5 160 kDa
sensitive to kinase inhibitor DRB hSpt4 14 kDa

NELF Negative factor, functions with DSIF NELF-A 66 kDa
NELF-B 61 kDa
NELF-C 59 kDa
NELF-D 58 kDa
NELF-E/RD 46 kDa

Factor 2 Negative factor, causes transcript release Factor 2 ∼110 kDa

P-TEFb Position factor, may function Cdk9 43 kDa
through CTD phosphorylation, Cyclin: T1 81 kDa
Cdk9 can partner with 1 of at least 4 cyclins T2a 74 kDa

T2b 81 kDa
K 41 kDa

TFIIH Positive factor, may funtion XPB/ERCC3 89 kDa
through CTD phosphorylation XPD/ERCC2 80 kDa

p62 62 kDa
p52 52 kDa
p44 44 kDa
Cdk7 40 kDa
Cyclin H 34 kDa
p34 34 kDa
MAT1 32 kDa

TFIIF Suppresses transient pausing RAP74 74 kDa
and premature arrest RAP30 30 kDa

FACT Facilitates transcription elongation hSpt16 140 kDa
through nucleosomes SSRP1 80 kDa

SII Relieves transient pausing and arrest TFIIS 32 kDa

Elongin Increases rate of elongation ElonginA 110 kDa
(SIII) ElonginB 18 kDa

ElonginC 15 kDa

Holo-ELL Increases rate of elongation ELL 80 kDa
EAP45 45 kDa
EAP30 30 kDa
EAP20 20 kDa

ELL2 Increases rate of elongation ELL2 84 kDa

CSB Increases rate of elongation CSB ∼165 kDa
May link transcription and repair

Tat-SF1 Increases rate of elongation Tat-SF1 140 kDa

Elongator Associated with elongating form Elp1 153 kDa
of RNA polymerase II. Elp3 has Elp2 90 kDa
histone acetyltransferase ability Elp3 64 kDa

aHuman elongation factors are described here. The exception is Elongator, which has only been described in yeast
thus far. Orthologues of many of these mammalian components exist in other organisms including yeast,Drosophila,
C. elegans, and mouse.
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that the action of TFIIH-associated helicases, and not the kinase, are essential for
promoter escape (51, 140, 312, 393).

Factors Influencing Elongation Processivity

TFIIS was originally identified by its ability to promote synthesis of long tran-
scripts by purified RNA polymerase II. TFIIS enables RNA polymerase II to pass
through various impediments to transcription, including intrinsic pause sites and
nucleoprotein complexes (reviewed in 476). TFIIS interacts with arrested RNA
polymerase II, activating an endoribonuclease activity. This nuclease cleaves
the nascent mRNA, permitting repeated attempts at passing through the block to
transcription (reviewed in 474).

Elongin (SIII) is a heterotrimer composed of the subunits elongin A, B, and C.
Elongin A contains the stimulatory activity of the complex while the elongin BC
complex interacts with numerous proteins, most notably the von Hippel-Lindau
(VHL) tumor suppressor gene product (15, 136, 269, 277). Elongin was originally
identified by its ability to stimulate the processivity of purified RNA polymerase
II in vitro (52, 53).

The ELL gene product enhances the elongation rate of RNA polymerase II by
its ability to suppress transient pausing (517). The human ELL gene undergoes
frequent translocations with the MLL gene in acute myeloid leukemias. Full-
length ELL (but not the ELL-MLL fusion) can also suppress RNA polymerase II,
but this activity is blocked when ELL is present in a complex termed holo-ELL
(514). Recently, the EAP30 subunit of holo-ELL has been cloned and shown to
be similar to theSNF8gene inS. cerevisiae(500).

Cockayne Syndrome B (CSB) protein enhances elongation by RNA polymerase
II in vitro (505). The yeast homologue of CSB,RAD26, suggests a link between
transcription and transcription-coupled repair. CSB can be found in a complex
with RNA polymerase II and may assist in both recruiting DNA repair proteins
to the stalled elongation complex and allowing repair proteins access to the DNA
(549, 551, 561, 577, 645).

Tat binds to the stem-loop structure located at the 5′ end of nascent HIV-1
transcripts and stimulates transcription by enhancing the processivity of RNA
polymerase II. This enhancement is dependent on the CTD and sensitive to kinase
inhibitors, strongly indicating that CTD kinases play a role in Tat-mediated stimu-
lation. Tat associates with both P-TEFb (169, 370, 662, 664) and TFIIH (172, 437)
to stimulate transcription of HIV. Affinity purification of Tat from HeLa extracts
identified an RNA polymerase II holoenzyme that contained sufficient factors to
enable Tat-mediated activation in vitro (125). In a related study, Tat function was
examined in two systems, a reconstituted system and a nuclear extract, both of
which were modified to be restrictive for Tat function (438). Under these con-
ditions, Tat could only stimulate activation in the nuclear extract, implying that
the nuclear extract contained factors lacking in the reconstituted system. Purifi-
cation of this activity resulted in the identification of Tat-SF. Remarkably, Tat-SF
includes RNA polymerase II and several other known Tat cofactors including
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Tat-SF1 (663), hSpt5 (623), P-TEFb, and additional polypeptides. A Tat-SF-
derived fraction lacking RNA polymerase II could impart Tat responsiveness to
both RNA polymerase II and an SRB/Med-containing holoenzyme, neither of
which is normally responsive to Tat.

Several factors have been identified that facilitate production of long transcripts
from chromatin templates in vitro, indicating that elongation may be stimulated by
remodeling of promoter-proximal histones. Two human factors, FACT and RSF,
enable transcription by purified components on chromatin templates (334, 425).
FACT interacts with histones (426), whereas RSF has ATP-dependent nucleosome
remodeling and spacing activity (333, 334). The ARC/DRIP complex stimulates
transcription specifically on chromatin templates, but the mechanism is unknown
(401, 466).

Additional Elongation Cofactors

Yeast RNA polymerase II molecules with highly phosphorylated CTDs can be
isolated together with a complex called Elongator. Otero et al (430) separated
chromatin-bound and soluble protein using high-speed centrifugation under high
salt conditions. RNA polymerase II with phosphorylated CTD was found almost
exclusively in the chromatin fraction, which also contained the Elongator com-
plex. Elongator contains three subunits and requires hyperphosphorylated CTD
for binding (430). Elongator has not been shown to directly stimulate the elon-
gation rate, but genetic evidence supports a role for this factor in elongation. As
previously noted, one of the elongator subunits contains histone acetyltransferase
activity, suggesting one possible means of modifying the acetylation state across
regions of actively transcribed DNA (612).

RNA POLYMERASE II AND mRNA PROCESSING

Primary transcripts produced by RNA polymerase II are typically modified at both
5′ and 3′ ends, and are subjected to splicing. The 5′ ends of mRNAs are capped
with a methylated guanosine triphosphate, and this modification is essential for
further processing, localization, and translation (518, 579). The 3′ ends of mRNAs
are cleaved and polyadenylated, and the 3′ polyA tract plays a role in transcript
termination, transport, translation, and stability (387, 661). mRNAs can be edited
after transcription by factors that modify, insert, and delete nucleotides (55). A sys-
tem exists to proofread and degrade aberrant RNA molecules (126, 227, 229). The
mature mRNA message must be conveyed to nuclear pores for export to the cyto-
plasm (404, 530, 535). Recent discoveries link several of these processing steps to
the RNA polymerase II CTD and other components of the transcription apparatus.

Links Between RNA Polymerase II and Capping

Nascent pre-mRNA is modified very early in its synthesis by addition of a 7-
methylguanine triphosphate cap, in a 5′-5′ linkage. The phosphorylated form
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of the RNA polymerase II CTD helps recruit the capping enzyme to the nascent
transcript (98, 379). Transcripts made from RNA polymerase II molecules lacking
CTDs are not capped, indicating that capping depends on an intact CTD (379).
Mammalian and yeast guanylyltransferases bind phosphorylated RNA polymerase
II and recombinant CTD, but not unphosphorylated CTD (98, 234, 379, 648).
Binding to the phosphorylated CTD also affects the activity of components of the
capping apparatus (97, 233).

RNA Polymerase II and 3′ End Formation

Cleavage of the transcript at the polyadenylation site is dependent on the pres-
ence of an intact RNA polymerase II CTD (380). Both cleavage polyadenylation
specificity factor (CPSF) and cleavage stimulation factor (CstF) can bind the CTD
in crude extracts and copurify with RNA polymerase II complexes (380). The
addition of recombinant CTD or intact RNA polymerase II can stimulate cleavage
in vitro in the absence of transcription, suggesting that the CTD may stimulate the
activity of cleavage factors or provide a scaffold for assembly of the complex (230).

The association of elements of the polyadenylation machinery with the RNA
polymerase II CTD suggests a mechanism for efficient coordination of 3′ end
formation and transcription termination. CPSF may accompany RNA polymerase
during transcript elongation, allowing recognition of its cognate binding site on
the transcript soon after its synthesis. A change in the association between CPSF
and RNA polymerase II might cause the enzyme to switch to a less processive
state, one that is primed for termination (reviewed in 37).

RNA Polymerase II and Splicing

Efficient mRNA splicing may be physically and functionally linked to the RNA
polymerase II CTD. Splicing is inhibited in vivo when genes are transcribed by
RNA polymerase II molecules with truncated CTDs (380). Phosphorylated CTD
can stimulate splicing in vitro (231). Interactions between activators, coactivators,
and splicing factors can affect the use of splice sites downstream (123, 124, 178, 179,
324, 546). Immunoprecipitates of phosphorylated RNA polymerase II contain
nuclear matrix components including members of the SR (Ser-Arg) and Sm (com-
ponents of snRNP complexes that comprise the spliceosome) families of splicing
factors (47, 278, 388, 394, 548, 590). Direct contacts have been documented
between the CTD and other proteins with SR-rich domains including the SCAFs
(SR-like CTD associated factor) (116, 446). Splicing is inhibited in vivo by over-
expressing the CTD, consistent with the possibility thattrans-acting splicing fac-
tors interact with this domain (135, 649).

PERSPECTIVES

The past decade has seen considerable advances in our understanding of the chro-
matin template, activation and repression, the complexes that regulate chromatin
structure, and RNA polymerase II and its initiation, elongation, and processing
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cofactors. Several important insights have emerged. The chromatin template is
modified by enzymes under the control of transcriptional activators and repressors
to make it more or less available to the transcription apparatus. Transcriptional
activators recruit a transcription initiation apparatus to promoters that is at least as
large and complex as a ribosome, consisting of a mediator complex that provides
an array of activator targets and the capacity to integrate multiple regulatory sig-
nals. The modular nature of the initiation apparatus provides an additional level
of regulation, and can be modified in response to changes in a cell’s environment.
Transcription initiation, elongation, and mRNA processing are linked through the
multiple functions of the RNA polymerase II CTD.

We can anticipate significant advances in transcription coming from several ar-
eas of investigation. It will be exciting to learn how cells coordinate the response
to changing environments via multiple signal transduction pathways. It will be
important to identify the requirements for components of the transcription appara-
tus at all genes in living cells. Detailed study of the regulation of individual genes
will continue to improve our understanding of the mechanisms that have evolved
to solve problems in combinatorial control, cell cycle timing, rapid response to
environmental changes, and other specific regulatory challenges in cells. Addi-
tional valuable insights into the molecular mechanisms generally involved in gene
regulation will come from structural studies.

It is now possible to envision the development of maps of transcriptional regula-
tory circuitry in cells. Genome-wide expression analysis with high-density DNA
arrays has already been useful for identifying genes whose expression depends
on individual components of the yeast transcription apparatus. The coupling of
genome-wide expression analysis using high-density DNA arrays with mathemat-
ical and computational methods can produce models for transcriptional regulatory
networks. Such models can be tested with a combination of genetic and genomic
approaches, and the molecular mechanisms responsible for the regulation observed
in networks can be identified with biochemical and molecular genetic approaches.

Visit the Annual Reviews home page at www.AnnualReviews.org
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Figure 1 A model for the role of activators in transcription initiation.
Several themes are featured. Transcriptional activators bind to specific DNA sequences, and
the chromatin context of the DNA binding site can have a positive or negative influence
on binding of the activator or the proteins it recruits to the promoter. Activators can bind
and recruit chromatin remodeling and modifying complexes that influence local chromatin
structure. One function of chromatin remodeling may be to increase the stability of the
activator-DNA complex, and another to affect access of promoter sequences for binding
of the transcription apparatus. Activators also bind and recruit the transcription initiation
apparatus to promoters, probably through the concerted interactions of a few large com-
plexes. Note that most of these processes are reversible, and are regulated by transcriptional
repressors. Activators may also influence events subsequent to assembly of the initiation
apparatus such as promoter clearance and RNA polymerase processivity. The diagram sug-
gests an order to the process of gene activation, although it is not clear that this occurs
at all promoters in vivo. The diagram shows a single activator bound at the promoter, but
promoters typically contain multiple activator binding sites.
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Figure 2 Effects of nucleosomes on binding of activators and transcriptional machinery.
(a) The packaging of DNA into nucleosomes is generally regarded as a block to transcrip-
tion, presumably because the nucleosome interferes with binding of activators (green) or
elements of the transcription machinery (blue). (b) Nucleosomes may serve a positive role
in transcription by positioning two distinct DNA segments to create a complete binding
site. (c) Nucleosomes may position independent activator binding sites to permit synergis-
tic binding of activators. (d) Nucleosomes may alter the orientation or distance between
factors, thereby stimulating interactions required for transcription.


